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ABSTRACT. There are infinitely many variants of the notion of Kan fibration that, together with
suitable choices of cofibrations and the usual notion of weak equivalence of simplicial sets, satisfy
Quillen’s axioms for a homotopy model category. The combinatorics underlying these fibrations
is purely finitary and seems interesting both for its own sake and for its interaction with homotopy
types. To show that these notions of fibration are indeed distinct, one needs to understand how
iterates of Kan’s Ex functor act on graphs and on nerves of small categories.

1. INTRODUCTION

The definition of fibration that now bears his name was introduced by Daniel Kan in 1957, and
remains a cornerstone of simplicial algebraic topology. A decade later, Quillen axiomatized ho-
motopy theory via his notion of a model category that comes equipped with three distinguished
classes of morphisms: fibrations, weak equivalences and cofibrations. The category of simpli-
cial sets, where Kan fibrations, topological (also called ‘combinatorial’) weak equivalences, and
monomorphisms serve these roles, remains the primordial example of a homotopy model category.
The goal of this article is to prove the following

Theorem: There exists a countably infinite properly increasing chain of subcategories of SSet

fib0 & fib1 & fib3 & . . . & fibn & . . .

and corresponding countable properly decreasing chain of subcategories

cof0 % cof1 % cof3 % . . . % cofn % . . .

such that for each n, fibn together with cofn and the usual (topological) notion of weak equivalence
provide a Quillen model structure on SSet . Here cof0 is the class of monomorphisms and fib0 that
of Kan fibrations.

This phenomenon of “variable (co)fibrations” is quite prevalent in Quillen model categories.
Recall that Quillen in [15] already proves the existence of two different notions of cofibration on
the category of chain complexes of modules (with one and the same definition of weak equiva-
lence, namely quasi-isomorphisms); on the category of simplicial diagrams, with objectwise weak
equivalences, one has the cofibrations of Bousfield–Kan [3] and Heller [7]; on cosimplicial spaces,
i.e. cosimplicial diagrams of simplicial sets, there is yet another one due to Reedy; on the category
of symmetric spectra, again at least three.
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There are at least two systematic methods of generating new cofibration classes within suit-

able model categories. If M
L

�
R
N is a Quillen adjunction between model categories M =

〈cofM,WM, fibM〉 and N = 〈cofN ,WN , fibN 〉 such that the right adjoint R preserves and reflects
weak equivalences, and preserves fibrations, then under a wide range of conditions (see below)
〈LLP,WM, R

−1(fibN )〉 will be a model structure onM; here R−1(fibN ) is the pre-image of the
class fibN under R, and LLP is the class of morphisms with the left lifting property with respect to
WM ∩ R−1(fibN ). Note that fibM ⊆ R−1(fibN ) by assumption. In caseM = N , the device can
be iterated. This is what we will do for simplicial sets, with Kan’s Ex functor playing the role of
R.

The other method relies on a theorem of Jeff Smith, see Thm. 1.7 of [2]. Let us agree that from
now on, we are only concerned with locally presentable model categoriesM whose category of
weak equivalences W is accessible, and all cofibration classes will possess a set of generators.
Suppose 〈cof0,W, fib0〉 and 〈cof1,W, fib1〉 are both model structures on M , and cof0 $ cof1.
(This situation is much less special than it might seem; the algebraic examples listed above, the
sheaf-theoretic ones below, and many more are like this. See [2] for an elaboration.) Given some
set of morphisms I , write cof(I) for the class of morphisms generated by pushouts, transfinite
compositions and retracts from I (this being the left lifting class corresponding to the right lifting
class of I), and write fib(I) for the class of morphisms with the right lifting property with respect
to W ∩ cof(I). Let I be any set of morphisms such that I ⊂ cof1 and cof0 ⊆ cof(I). Then it
follows from Jeff Smith’s theorem that 〈cof(I),W, fib(I)〉 is a model structure onM as well.

Note that cof0 ⊆ cof(I) ⊆ cof1. If the inclusions are strict, we have managed to place an
“intermediate” class of cofibrations between the cof0 and cof1 that were assumed to exist. It is
easy to achieve cof0 $ cof(I) ⊆ cof1: find a set I0 such that cof0 = cof(I0), and let I be any set of
morphisms with I0 ⊂ I ⊂ cof1 such that I is not a subset of cof0. What is much harder to establish
is the strictness of the second inclusion. If I includes a set of generators for cof1 then cof(I) =
cof1, of course. Proving that cof(I) $ cof1 seems to require showing that appropriate objects
are not injective with respect to certain morphisms, a somewhat unusual problem. Nonetheless,
a priori there is a proper class of choices for I , thus room for a proper class of intermediate
cofibration classes.

Note that cofibration classes intermediate between the Bousfield–Kan class and all monomor-
phisms have already been constructed for (pre)sheaves of simplicial sets over a Grothendieck site,
weak equivalences being the usual stalkwise ones. (See Beke [2] Example 2.17, Jardine [11], Isak-
sen [10].) Unlike the class of all monomorphisms, these intermediate cofibration classes are not
functorial with respect to all geometric morphisms between toposes. But perhaps it is time to ask
outright

Question 1.1. (a) Is there a proper class of distinct cofibration classes on SSet , where weak equiv-
alences are taken to be the usual topological ones?
(b) Is there a maximal among these cofibration classes?
(c) If so, is the maximal one the class of all monomorphisms? (Equivalently, does every axiomatic
class of fibrations include the Kan fibrations?)
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One would venture that the behavior of SSet is paradigmatic among all combinatorial model
categories. As regards (a), note that in general there is no upper bound on the cardinality of
possible cofibration classes for a model category (with fixed weak equivalences, hence the same
homotopy category), nor do these classes have to be ordered linearly by inclusion. As regards (b),
it is quite easy to see that for combinatorial model categories, suprema exist for sets of cofibration
classes in the partial order they form under inclusion. This, and the ensuing “Quillen uniqueness”
for cofibrations, is investigated in [1]. As regards (c), the left-determined model structures of
Rosický and Tholen [16] may well be relevant.

Acknowledgements. I am indebted to Denis-Charles Cisinski for several insightful remarks on
an earlier draft of this article.

2. SUBDIVIDED COFIBRATIONS

In this paper, our concern is showing that SSet contains an infinite properly decreasing chain of
cofibration classes. Topologically, they are all equivalent; the variability is due to the combinatorics
of simplices. A map belongs to the nth exotic sense of fibration in Thm. 2.2, quite simply, if
it becomes a Kan fibration after n iterations of Kan’s simplicial extension functor Ex. Proving
that the fibn, thus defined, form part of a Quillen model structure on SSet is straightforward. To
prove the strict monotonicity of the inclusion finn & fibn+1, it is enough to show that there is a
simplicial set that becomes a Kan complex after exactly n + 1 iterations of Ex. Using the small
object argument, one can generate a fairly explicit family of simplicial sets X such that Exn+1(X)
is fibrant (in the ordinary sense). The hard part is finding an X among them such that Exn(X) is
not yet fibrant. We show, by an ad hoc path-length argument in the category of graphs, that the
fibrantization (in the n+1st sense) of the nth subdivision of the horn Λ0

2 is such anX . Many aspects
of the combinatorics of iterated Ex remain delightfully mysterious; some surprising connections
will be pointed out in the closing section of this paper.

Let us recall what Ex is. Thinking of the n-simplex ∆n (for the moment only) as a combinatorial
simplicial complex, it has a barycentric subdivision sd ∆n. Using the natural partial ordering of its
vertices, sd ∆n can be made into a simplicial set. The correspondence [n] 7→ sd ∆n in fact extends
to a functor ∆

sd−→ SSet , where ∆ is the simplicial indexing category. Such a functor generates a
self-adjunction of SSet in a standard categorical manner

SSet
Ex

//
SSet

Sd
oo

∆

y

OO

sd

ddHHHHHHHHH

Here y : ∆ → SSet is the Yoneda embedding, Sd is the left Kan extension of sd along y,
and Ex is the right adjoint of Sd; for X ∈ SSet , the set of n-simplices of Ex(X) is given by
homSSet(sd ∆n, X), and the face and degeneracy maps of Ex(X) are defined via those between
the sd ∆n.

There exist morphisms (the “last vertex maps”) sd ∆n → ∆n which induce a natural transfor-
mation (in fact, inclusion) X

ηX−→ Ex(X) that is a weak equivalence for all X . From the naturality
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of
X

f

��

//
ηX

// Ex(X)

Ex(f)
��

Y //
ηY

// Ex(Y )

and the 2-of-3 property it follows that Ex(f) is a topological weak equivalence if and only if
f is one. Finally, Sd takes the generating acyclic cofibrations into acyclic cofibrations, thus Ex
preserves Kan fibrations. (See Kan [12] or Goerss–Jardine [6] for careful details.)

Proposition 2.1. Let SSet
Sdn

�
Exn

SSet be the n-fold iteration of the simplicial subdivision – extension

adjunction, and let ck : ∂∆k ↪→ ∆k be the set of generating cofibrations for SSet . (By convention,
set Ex0, Sd0 to be the identity.) In SSet , define

• cofn to be the closure under pushouts, transfinite compositions and retracts of the set of mor-
phisms Sdn(ck)

•W to be the class of topological weak equivalences

• fibn to be the class of morphisms f such that Exn(f) is a Kan fibration.

Then 〈cofn,W, fibn〉 form a Quillen model structure on SSet .

Proof. Define (for the moment) W−1 to be the class of maps f such that Exn(f) ∈ W. Since
Exn preserves Kan fibrations, topological weak equivalences and arbitrary filtered colimits, it fol-
lows from the small object argument that cofn, W−1 and fibn define a Quillen model structure on
SSet . (See Hirschhorn [8] or Hovey [9] for the statement of ‘creating model structures by right
adjoints’ in the context of cofibrantly generated model categories.) But W−1 = W since Ex(f) is
a topological weak equivalence if and only if f is one. �

Remark. As far as homotopy model theory is concerned, the crux is not so much sd being
a subdivision as being a singular functor, that is to say, functor ∆

s−→ SSet whose values are
(weakly) contractible simplicial sets, inducing an adjunction with the above properties. There’s
no shortage of such singular functors, yet I am not aware of an easy argument that any of them
induces a countable properly decreasing chain of ‘axiomatic cofibrations’. At any rate, sd does:

Theorem 2.2. For the model structures defined in Prop. 2.1, one has strictly monotone chains of
inclusions

fib0 & fib1 & fib3 & . . . & fibn & . . .

resp.
cof0 % cof1 % cof3 % . . . % cofn % . . .

Proof. Since Ex preserves Kan fibrations, the inclusion fibn ⊆ fibn+1 is automatic, and that
implies cofn ⊇ cofn+1. The strictness follows from

Proposition 2.3. For any n ∈ N, there exists a simplicial set X such that Exn(X) does not satisfy
the Kan extension condition, but Exn+1(X) does.
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The proof is preceded by two lemmas. The first one states, roughly, that in the nth barycentric
subdivision of a triangle, pairs of points on the boundary cannot be connected by interior paths
shorter than 2n. (This will be responsible for non-injectivity of a certain graph with respect to
certain graph maps.) The second lemma states an analogue of this for the nth simplicial subdivision
of the simplex ∆n. We then exhibit the required counterexample X: it is R∞(Sdn Λ0

2), where
R∞ is the canonical fibrantization functor for the model structure fibn, and the horn Λ0

2 is ∆2

minus its (non-degenerate) 2-simplex and 0th face. (See Conj. 3.1 for another guess at where
counterexamples may come from.)

Lemma 2.4. Let x and y be vertices of the nth barycentric subdivision of a triangle with vertices
A, B, C. Suppose x lies on the side AB and y on the side AC of the triangle, x 6= A and y 6= A.
Let p be an edge path connecting A and B. Suppose p does not pass through the vertex A. Then p
contains at least 2n edges.

This is an example of the statement for n = 2:

OOOOO

������
BA

C

x

y

FIG. 1. To get from side AB to side AC, avoiding the vertex A,
you need an edge path of length at least 22 in the twice-subdivided triangle ABC.

The proof of this lemma (which is an inductive partitioning argument) is postponed. Now, for
vertices x, y of a simplicial set, write d(x, y) for their edge distance, that is to say, the least length
of a possibly “zig-zag” edge path connecting them. (All simplicial sets considered below will be
connected.) If x, y are vertices of X , and X

f−→ Y is a map of simplicial sets, note that

d(x, y) > d(f(x), f(y)).

As far as edge-paths are concerned, the difference between simplicial subdivision and barycentric
subdivision of the standard simplices and their subcomplexes is that the edges of a simplicial set
are oriented, and each vertex of a simplicial set carries a degenerate edge beginning and ending
there. Neither of these affects edge distances, and in the next lemma, if so desired, one is entitled
to think in terms of simplicial complexes.
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Lemma 2.5. Let x and y be vertices of Sdn(∂∆k), thought of as simplicial subset of Sdn(∆k).
If d(x, y) < 2n in Sdn(∆k), then the distance of x and y in Sdn(∂∆k) equals their distance in
Sdn(∆k).

Proof. (a) Suppose there is a top-dimensional face i : ∆k−1 ↪→ ∆k of our k-simplex such that
Sdn(∆k−1) contains both x and y. There is a retraction r : ∆k → ∆k−1 in SSet (a degeneracy
‘dual’ to i), whence a retraction Sdn(r); by the above remark, the distance of x and y in Sdn(∂∆k)
then cannot be greater than their distance in Sdn(∆k).

(b) If no face of ∆k contains both x and y, then, without loss of generality, assume that x lies
on the face opposite the vertex [0], y lies on the face opposite the vertex [1], and neither lies on
the intersection of these faces, the (codimension 2) face F with vertices [2], [3], . . . , [k]. Consider a
distance-minimizing path p in Sdn(∆k) between x and y. If p contains a vertex F on the subdivided
face F, then the argument of part (a) can be applied separately to the paths XF and FY to deduce
that a distance-minimizing edge path between x and y can proceed on Sdn(∂∆k), as claimed.

(c) The missing case is when the distance-minimizing path p avoids F. We show that any such
path must be of length 2n at least, contradicting our assumption that d(x, y) < 2n.

Consider the simplicial collapsing map ∆k
c−→ ∆2 corresponding to the monotone map that

sends [0] to [0], [1] to [1], and [i] to [2] for i > 2. Under the map Sdn(c), x and y are sent
into vertices of Sdn(∆2), x lying on the side opposite the vertex [0], y lying on the side opposite
the vertex [1], and p will become an edge path connecting them that avoids the vertex [2]. By
Lemma 2.4, Sdn(p) has at least length 2n, whence so does p. �

For any simplicial set U , define R∞(U) to be the colimit of the chain

R0(U)→ R1(U)→ R2(U)→ R3(U)→ . . .

where R0(U) = U and Rj+1(U) arises from Rj(U) by pushing on all n+ 1-times subdivided horn
filling conditions

Sdn+1(Λi
k)

//

��

��

Rj(U)

Sdn+1(∆k)

that exist at that stage. By Quillen’s small object argument, R∞(U) has the right lifting property
with respect to the set of maps Sdn+1(Λi

k) → Sdn+1(∆k). Adjointly, Exn+1(R∞(U)) is a Kan
complex. Set U = Sdn(Λ0

2). We will exhibit a specific lifting problem with respect to an n-
times subdivided horn inclusion that X = R∞(Sdn(Λ0

2)) fails; that is to say, Exn(X) is not a Kan
complex.
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The lifting problem will be

Sdn(Λ0
2)

canonical
//

��

i
��

R∞(Sdn(Λ0
2))

Sdn(∆2)
(?)

55

Sdn(Λ0
2) is precisely a zig-zag of length 2n+1. Call its extreme vertices x and y. (x and y are thus

the vertices of ∆2 that bound the edge missing in Λ0
2.) Note that d(i(x), i(y)) = 2n in Sdn(∆2).

If a lift (?) existed, then it would have to exist into Rj(Sdn(Λ0
2)) for some finite j already, since

Sdn(∆2) is (simplicially) finite. So, letting rj denote the canonical map Sdn(Λ0
2)→ Rj(Sdn(Λ0

2)),
to prove the impossibility of a lift, it suffices to prove

d(rj(x), rj(y)) = 2n+1 in Rj(Sdn(Λ0
2)) for all j > 0.

This is true for j = 0; now use induction. Rj+1(Sdn(Λ0
2)) arises from Rj(Sdn(Λ0

2)) via simultane-
ous pushouts of the type

Sdn+1(Λi
k)

//

��

��

Rj(Sdn(Λ0
2))

��

Sdn+1(∆k) // Rj+1(Sdn(Λ0
2))

Let a, b be any vertices of Rj(Sdn(Λ0
2)). In Rj+1(Sdn(Λ0

2)), possibly new paths have been
pushed on that connect a and b, but by Lemma 2.5, if d < 2n+1, paths of length d are attached only
between a, b whose distance in Rj(Sdn(Λ0

2)) is d or less. Therefore, if d(a, b) 6 2n+1, the distance
of a and b in Rj(Sdn(Λ0

2)) equals their distance in Rj+1(Sdn(Λ0
2)). In particular, by the induction

hypothesis, d(rj(x), rj(y)) = 2n+1 = d(rj+1(x), rj+1(y)).

To finish the proof of Prop. 2.3, we still need to prove Lemma 2.4. Let us return to the language
of planar figures. By induction on n, we will show that the 6n triangles in the nth barycentric
subdivision of ABC can be assigned into 2n disjoint classes (which we will call ‘rays’ and label
with the integers from 1 through 2n) such that

(1) Side AB (other than the vertex A itself) lies on ray 1; side AC (other than the vertex A)
lies on ray 2n.

(2) Let T be one of the 6n small triangles. Suppose T belongs to ray i and does not contain the
vertex A. Then either (2a) one edge of T lies on the common boundary of ray i and ray
i + 1 (for some 1 6 i 6 2n) and its opposite vertex lies on the common boundary of ray
i and ray i − 1 or (2b) one edge of T lies on the common boundary of ray i and ray i − 1
(for some 1 6 i 6 2n) and its opposite vertex lies on the common boundary of ray i and
ray i+ 1. The interior of the other two edges of T , in both cases, will belong to ray i.

(To avoid having to state separate cases for i = 0 and i = 2n, let us agree that the side AB belongs
to ray 0, and side AC belongs to ray 2n + 1.)
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i+ 1

type (2a)

i− 1

ii i
������
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??????
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i− 1

type (2b)

i+ 1

ii i
������

WWWWWWWWW
ggggggggg

??????

From (1) and (2) it follows that an interior edge of the subdivided triangle, if it does not contain
the vertex A, either lies on the common boundary of ray i and ray i + 1 (for some 1 6 i 6 2n),
or spans ray i (so that one of its endpoints belongs to ray i − 1 and ray i, and the other endpoint
belongs to ray i and ray i + 1). To get from point x on the side AB to point y on the side AC,
avoiding vertex A, a path must cross all 2n rays, so must contain at least 2n edges, as claimed.

Here are the rays for n = 1 and n = 2.

444444444444444444444






















oooooooooooooooooooo
BA

C

1 1
12

2 2

FIG. 2. The partitioning of Sd1 ∆2.
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1

2

3

4

BA

C

FIG. 3. The partitioning of Sd2 ∆2.
Only one triangle in each contiguous region is marked with its number i.
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In general, the partitions are defined by induction. Let T be a triangle of Sdn ∆2, not containing
the vertex A, and of the type that was denoted (2a) above. Its subdivisions will then be assigned
numbers

444444444444444444444






















oooooooooooooooooooo

2i− 2

2i 2i

2i2i

2i−1 2i−1

2i+ 1

���������

WWWWWWWWWWWW

gggggggggggg

?????????

If T is of type (2b), its subdivisions will be labeled

444444444444444444444






















oooooooooooooooooooo

2i+ 1

2i−1 2i−1

2i−12i−1

2i 2i

2i− 2

���������

WWWWWWWWWWWW

gggggggggggg

?????????

and the induction hypotheses are satisfied. (It is worthwhile to iterate the construction and observe
the ‘fractal boundaries’ of the rays, and the self-similarity of the local patterns arising.)

As for the triangles in Sdn ∆2 that contain the vertex A, forming a fan around A, they are num-
bered consecutively from 1 (at sideAB) to 2n (at sideAC); this is compatible with the subdivisions
of type (2a) and (2b).

This, then, finishes the proof of Lemma 2.4, and also of Prop. 2.3, so of the main theorem. �

One can show (see Prop. 3.3 below) that the standard simplices belong to fibn for n > 0. (∆k itself
is a Kan complex only for k = 0.) On the other hand, for n > 0 it will no longer be true that every
simplicial set is cofibrant.

3. FIBRANCY AND NERVES OF CATEGORIES

In his groundbreaking [17], Thomason proved that the categorification-nerve adjunction Cat
cat

�
N

SSet creates a model structure on Cat , Quillen equivalent to spaces, from the one on SSet we
denoted 〈cof2,W, fib2〉. It follows that it creates one from 〈cofn,W, fibn〉 for any n > 2; but it
does not formally follow that the fibrancy classes of these model structures on Cat are distinct. It
is tempting to believe that they are. That is implied by the n > 2 cases of the following
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Conjecture 3.1. For any n, there exist categories C (even monoids) such that Exn(NC) is not a
Kan complex, but Exn+1(NC) is.

This happens to be true for n = 0, as we recall below, but the n > 1 cases of Conj. 3.1 have
quite a different feel.

Proposition 3.2. For a small category C, NC is a Kan complex if and only if C is a groupoid.

This is classical; a proof can be found in e.g. Lee [14].

Proposition 3.3. For a small category C, Ex(NC) is a Kan complex if and only if C possesses a
left calculus of fractions with respect to itself.

This is Latch–Thomason–Wilson [13], remark 5.8. Note that for a category, being a groupoid
amounts to injectivity with respect to two functors in the category of (small) categories: these
ensure the possibility of left and right “division”. Similarly, the property of a category “possessing
a left calculus of fractions with respect to itself” amounts to injectivity with respect to both of the
following inclusions between finite diagrams:

• //

��

• • //

��

•

��

+3

• • // •
• // • //

// • +3 • // • //
// • // •

(Composition rules for arrows are omitted, but see Gabriel–Zisman [5].)

One can think of C “possessing a left calculus of fractions with respect to itself” as an approxi-
mation to its being a groupoid; the morphisms of C[C−1], while not actual arrows, are representable
by equivalence classes of zig-zags of length 2. If one takes C to have a single object (i.e. to be a
monoid), then for it to have a left calculus of fractions means that it satisfies the left Ore conditions;
in a certain way, it is close to being a group.

Now if C is a groupoid, then NC is homotopy equivalent to the disjoint union of Eilenberg–
MacLane spaces K(π, 1) corresponding to its vertex groups. By a theorem of Dwyer and Kan [4],
if C possesses a left or right (more generally, homotopy left or right) calculus of fractions with
respect to all its morphisms, then the localization map C → C[C−1] induces a weak equivalence on
nerves. By putting all these facts together, one sees that for n 6 1 the following is true: if C is a
small category such that Exn(NC) is a Kan complex, then NC is weakly equivalent to a disjoint
union of Eilenberg–MacLane spaces (i.e. has vanishing homotopy groups above dimension 1).

For any given n > 2 however, by Thomason’s result, the range of Exn(NC) will include Kan
complexes within all homotopy types. It follows that for n > 2, the fibrancy of Exn(NC) cannot be
characterized with the help of finitely many lifting conditions between small categories — unlike
the cases of n = 0 and n = 1, groupoids and left Ore categories. To be sure, Exn(NC) is a
Kan complex if and only if the category C is injective with respect to a certain countably infinite
family of maps between finite posets, namely, cat

(
Sdn(Λi

k ↪→ ∆k)
)
. This suggests that Conj. 3.1

is still very “simplicial”; perhaps one can prove it by looking carefully at composability of edges
in Sdn ∆k.
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To sum up, whenever one transports via right adjoints “exotic” fibration classes such as fibn
from SSet to small categories, higher groupoids, simplicial universal algebras, etc., or sheafifies
them [2], it needs to be checked whether new fibrations are created. An example when this does
not happen is across the adjunction

Top
|−|
�
Sing

SSet

owing to the fact that the geometric realization of a subdivided simplex is homeomorphic to the
original. Maybe (compactly generated) topological spaces and weak equivalences possess an ex-
tremal fibration class.
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