
MORPHISMS OF CONTEXT-FREE GRAMMARS

TIBOR BEKE

1. INTRODUCTION

Let me begin with a little known comment by Noam Chomsky (see [GE82] p.15 or [GE04] p.42),
made in response to a question on the significance of automata theory for linguistics and mathe-
matics:

This seems to me what one would expect from applied mathematics, to see if you can
find systems that capture some of the properties of the complex system that you are work-
ing with, and to ask whether those systems have any intrinsic mathematical interest, and
whether they are worth studying in abstraction. And that has happened exactly at one
level, the level of context-free grammar. At any other level it has not happened. The sys-
tems that capture other properties of language, for example, of transformational grammar,
hold no interest for mathematics. But I do not think that is a necessary truth. It could
turn out that there would be richer and more appropriate mathematical ideas that would
capture other, maybe deeper properties of language than context free grammars do. In
that case you have another branch of applied mathematics which might have linguistic
consequences. That would be exciting.

Let me hasten to say that I do not wish to argue with Chomsky’s assessment. It would be
hard to do, at any rate, since he leaves room for both possibilities: that there is no linguistic the-
ory beyond context-free grammars that is of interest to mathematics; or perhaps there is. But I
was particularly struck by the sentence The systems that capture other properties of language, for
example, of transformational grammar, hold no interest for mathematics. From the 1970’s on,
transformational grammar has been responsible, directly on indirectly, for much research on gen-
eralizations of automata that, instead of transforming strings to strings, transform trees to trees.
Rational transducers, for example, gave rise to a variety of tree transducers (deterministic, non-
deterministic, top-down, bottom-up), in no small part motivated by the desire to find a compact
mathematical formalism underlying transformational grammar. In fact, transformations of parse
trees, called translations in the computer science literature, are central to the contemporary theory
of compilers. There has been a subtle change of perspective, though. Transformational grammar,
motivated by examples such as the English passive, seeks to understand operations on tree-like
structures within one given language. Compilers translate from source code to object code: from
one (typically context-free) language to another.

One can appeal to an algebraic analogy at this point. If context-free languages are like algebras,
then context-free grammars are like presentations of algebras via generators and relations. One can

Date: August 3, 2017.

1

2 TIBOR BEKE

map one set of generators into another in a way that preserves relations; such a mapping induces
a homomorphism of algebras. So there ought to be such a thing as mapping one context-free
grammar into another in a ‘structure-preserving’ way, and this should induce a homomorphism
between languages.

The goal of this note is to give one possible definition of morphism of context-free grammars.
This notion will organize context-free grammars into a category [CWM] in such a way that the ef-
fects of morphisms on parse trees — these are, more or less, the ‘translations’ of computer science
— become functorial. The appearance of these category-theoretic concepts is somewhat auxiliary,
however, to the main enterprise, which is to understand what it means to map one grammar into
another ‘in a grammatical way’.

We will be guided by four examples of grammatical operations. Keeping in mind Chomsky’s
dictum, each of them arises naturally within some body of formalized mathematics — algebra or
logic. Going through the motivating examples, the reader is invited to play with the following
questions: Which levels of the Chomsky hierarchy do the source and target languages belong
to? Which family of transformations (translations? transductions?) does the operation belong to?
Each of the motivating examples is given by an explicit formal recipe. Isn’t that recipe an outright
‘morphism’?

Motivating examples.

(a) In a (non-commutative) ring, the commutator [x, y] of two elements x, y is defined by

[x, y] = x · y − y · x
Let L0 be the language of well-formed iterated commutators of elements, and let L1 be
the language of well-parenthesized terms in the function symbols · and − . Consider the
operation that associates to an expression in L0 its equivalent in L1 (prior to expansion and
simplification). For example, [[x, y], z] is to be mapped to

(((x · y)− (y · x)) · z)− (z · ((y · x)− (x · y))) .

(b) Consider the language L0 of (ambiguous) parenthesis-free terms formed from a set of vari-
ables with the binary operators ~ and �. Let L1 be the language of terms, with the same
operators, in prefix form. Consider the multi-valued mapping that associates to a term in
L0 its prefix forms, under all possible parses. For example, the possible parses of x~ y� z
are (using parentheses, informally)

(x~ y)� z resp. x~ (y � z)

or �~ xyz resp. ~x� yz in prefix form.
Can this multi-valued mapping be described without mentioning prefix and infix traversals
of binary trees?

(c) Fix a first order signature, and consider the language L of well-formed formulas of first
order logic. Let x be a variable, t a term and φ a formula in L. Define the result τx→t(φ) of
replacing the free occurrences of x in φ by t by the usual set of rules. (These rules will not

MORPHISMS OF CONTEXT-FREE GRAMMARS 3

be recalled here; see e.g. Mendelson [M10] or any careful textbook of logic.) Fix x and t,
and consider the map from L to itself sending φ to τx→t(φ).

(d) Consider again the language L of first order logic. The negation normal form, NNF(φ) of a
formula φ is defined by the rewrite rules

qqφ⇒ φ

q(φ ∧ ψ)⇒qφ∨ qψ
q(φ ∨ ψ)⇒qφ∧ qψ
q∀xφ⇒ ∃xqψ
q∃xφ⇒ ∀xqψ

Iterated application of these rules transforms any well-formed formula into a logically
equivalent one where the targets of negation symbols (if any) are atomic formulas. Does
the operation sending φ to NNF(φ) belong in the same family as any of (a), (b) or (c)?

Notation. We will consider alphabets A and context-free grammars G with productions written
x→ s where x ∈ A and s is a string in A∗. Neither A nor G is assumed finite. An element x of A
is non-terminal if it occurs on the left-hand side of some production, and is terminal otherwise. N
and T will denote the set of non-terminal and terminal symbols, respectively; so A = N t T . For
u, v ∈ A∗, write u ⇒ v if v is immediately derivable from u; let⇒+ denote the transitive and⇒∗
the reflexive-transitive closure of the relation⇒.

We will find it convenient to consider each non-terminal as a possible start symbol, and to
consider strings both in the full alphabet A and in the set of terminals T . For x ∈ N , define

L̂G(x) = {u ∈ A∗ | x⇒∗ u}
and

LG(x) = {u ∈ T ∗ | x⇒∗ u}
Thus, for non-terminal x, L̂G(x) is the set of sentential forms that can be generated from x (con-
sidered as a start symbol), and LG(x) is the usual language generated from x.

Let us recall the notion of unambiguous grammar in the form that will be most useful to us:

Definition 1.1. The context-free grammar G is unambiguous if for every non-terminal x and u ∈
A∗ with x⇒+ u there exists exactly one pair of k-tuples

s1, s2, s3, . . . , sk; u1, u2, u3, . . . , uk

where si ∈ A and ui ∈ A∗, such that

• x→ s1s2s3 . . . sk is a production
• u = u1u2 . . . uk, and
• si ⇒∗ ui for each 1 6 i 6 k.

4 TIBOR BEKE

This is equivalent to the requirement that the parse tree of every sentential form u ∈ L̂G(x)
be unique; or, equivalently, that there exist a unique leftmost derivation, starting from x, for each
u ∈ L̂G(x). If every non-terminal is productive, that is, LG(x) is non-empty for all non-terminals
x, then Def. 1.1 is equivalent to the unambiguity of the LG(x) in the classical sense. However,
Def. 1.1 makes sense even if some or all of the LG(x) are empty.

Definition 1.2. For x ∈ N , let treeG(x) denote the set of parse trees of sentential forms from
L̂G(x), with root x. (One could just as well consider the set of leftmost or rightmost derivations,
or other representatives of equivalence classes of derivations, but the formalism of trees is the
handiest.) The depth of a tree is the number of nodes on the longest path from root to any leaf,
minus 1. Thus, for T ∈ treeG(x), depth(T) = 0 if and only if T consists solely of the root (which
is also a leaf) x. Note that depth(T) = 1 if and only if T equals some production x → s ∈ G.
Let NT(T) denote the set of leaves of T labeled by non-terminal symbols; for a node t of T , let
label(t) denote the label (i.e. element of the alphabet A) at t.

Let T1 ∈ treeG(x) and let T2 be a tree with a leaf t such that label(t) = x. We will skip the
definition of the horticultural maneuver of grafting T1 onto T2 at the location t. It is the same as
the composition of (chains of) productions, as the illustration(s) below will make it clear.

2. MORPHISMS OF GRAMMARS

Let G0 and G1 be context-free grammars in the alphabets A0 and A1, with terminals T0, T1 and
non-terminals N0, N1 respectively.

Definition 2.1. A morphism from G0 to G1 consists of the following data:

• a mapping α : N0 → N1

• a mapping β that assigns to each production x→ s ∈ G0 an element of treeG1(α(x))
• for each production p ∈ G0, a function γ(p,−) from NT(β(p)) to NT(p), with the property

that for all t ∈ NT(β(p)),

α
(
label(γ(p, t))

)
= label(t) .

More plainly, α gives the translation of lexical categories. β specifies, for each production p : x→
s in the source grammar, a parse tree in the target grammar, with root α(x). Productions of the form
x → s will be translated to trees of the form β(x → s). The re-indexing map γ(p,−) associates
to the location of each non-terminal symbol r occurring as a leaf in β(x → s) the location of a
non-terminal symbol s in s such that α will translate s to r. This permits translation of the input
parse tree by either top-down or bottom-up recursion.

MORPHISMS OF CONTEXT-FREE GRAMMARS 5

Let us make this more concrete by a formalization of our motivating example (a). For the sake
of readability, we will depart from the BNF convention of enclosing names of non-terminals in
angle brackets; strings typeset in sans serif font, such as var and expr, should be considered as
stand-alone symbols. Also, we will drop commas separating elements of a set being listed. Dots
‘. . . ’ indicate a (potentially infinite) set indexed by the natural numbers.

Example 2.2. Consider the source alphabet

N0 = { var expr }
T0 = { [,]x1 x2 . . . xi . . . }

Let the grammar G0 consist of the productions

var→ x1 | x2 | . . . | xi | . . .
expr→ [var, var]

expr→ [var, expr]

expr→ [expr, var]

expr→ [expr, expr]

Now consider the target alphabet

N1 = { var expr }
T1 = { () − ·x1 x2 . . . xi . . . }

Let the grammar G1 consist of the productions

var→ x1 | x2 | . . . | xi | . . .
expr→ var − var | var · var
expr→ var − (expr) | var · (expr)
expr→ (expr)− var | (expr) · var
expr→ (expr)− (expr) | (expr) · (expr)

There is a morphism from G0 to G1 with components α, β, γ defined by

• α(expr) = expr and α(var) = var
• β(var→ x) = x for any variable x; note that γ(var→ x,−) has empty domain
• β(expr→ [var, var]) is

expr

(expr) − (expr)

var · var var · var

generating the string (var · var)− (var · var). Let us refer to the leaves of the above tree via
their location in ‘(var · var) − (var · var)’; so the leaves labeled with non-terminals occur

6 TIBOR BEKE

at {2, 4, 8, 10}. Similarly, let us refer to the leaves in NT(expr → [var, var]) through their
location in the string ‘[var, var]’, i.e. {2, 4}. Then define

γ(expr→ [var, var], 2) = 2

γ(expr→ [var, var], 4) = 4

γ(expr→ [var, var], 8) = 4

γ(expr→ [var, var], 10) = 2

Visually, the re-indexing map γ(expr→ [var, var],−) is indicated by the dotted and broken
arrows

expr expr

[var , var] (expr) − (expr)

var

kk

· var

ee

var

ee

· var

gg

Continuing with the next production, define

β(expr→ [var, expr]) = (var · (expr))− ((expr) · var)
(Since G1 is unambiguous, we will identify sentential forms with their parse trees.) Using
the same coding of locations as above, define

γ(expr→ [var, expr], 2) = 2

γ(expr→ [var, expr], 5) = 4

γ(expr→ [var, expr], 10) = 4

γ(expr→ [var, expr], 13) = 2

The treatment of the other two productions, and re-indexing of non-terminals therein, is
analogous.

How does translation from L̂G0(expr) to L̂G1(expr) actually work? Consider a sentential form
generated by G0 from expr, say,

[x7, [var, x3]]

with parse tree
expr

[var , expr]

x7 [var , var]

x3

MORPHISMS OF CONTEXT-FREE GRAMMARS 7

Since G1 is unambiguous, the process is easiest to describe by bottom-up induction. Starting from
the leaves, associate to each non-terminal symbol t in the input tree a string τ(t) from L̂G1(α(x)):

• If t is a leaf, let τ(t) = α(t).
• If t is var, with descendant var→ x, set τ(var) = x.
• Suppose t is a node expr with descendants, say, [var, var]. Let s1 = τ(var) for the first

occurrence of ‘var’ in [var, var], and s2 = τ(var) for the second occurrence. (τ is supposed
to be defined on those two symbols by induction.) Then set

τ(expr) = (s1 · s2)− (s2 · s1)
The idea is analogous for the other productions with source expr.

To see what is going on, let us affix subscripts to the non-terminals of the above parse tree:

expr0

[var0 , expr1]

x7 [var1 , var2]

x3

Then
τ(var1) = var τ(var0) = x7 τ(var2) = x3

τ(expr1) = (var · x3)− (x3 · var)
τ(expr0) = (x7 · ((var · x3)− (x3 · var)))− (((var · x3)− (x3 · var)) · x7)

For the parse tree
expr0

[var0 , expr1]

x7 [var1 , var2]

x5 x3

a moment’s thought confirms that

τ(expr0) = (x7 · ((x5 · x3)− (x3 · x5)))− (((x5 · x3)− (x3 · x5)) · x7)
respecting all long-distance dependencies.

Above, G0 was an unambiguous grammar, hence one could talk of the translation of a string or
of a parse tree interchangeably. The next proposition defines the effect of a morphism of grammars
in general. We retain the notation of Def. 2.1.

Proposition 2.3. A morphism of grammars from G0 to G1 induces, for each x ∈ N0, a mapping

τ : treeG0(x)→ treeG1(α(x)) .

8 TIBOR BEKE

Indeed, for T ∈ treeG0(x), define τ(T) ∈ treeG1(α(x)) by induction on the depth of T :

• If depth(T) = 0, then T must be x itself, and τ(T) is defined to be α(x).
• If depth(T) > 0, let x→ s ∈ G0 be the top production in T . Write p for x→ s for brevity. Note
that NT(p) can be identified with a subset of s, namely, the locations of the non-terminal symbols
in s. Since G0 is context-free, each s ∈ NT(p) induces a subtree Ts of T with s as root. For each
t ∈ NT(β(p)), graft the tree τ(Tγ(p,t)) on β(p) with t as root. τ(T) is defined to be the resulting
tree.

The definition makes sense: since depth(Ts) < depth(T) for any s ∈ NT(p), τ(Ts) is defined by
the induction hypothesis. Note that τ(Ts) belongs to treeG1(α(label(s)) by the induction assump-
tion, and α

(
label(γ(p, t))

)
= label(t) by Def. 2.1. That is, the non-terminal symbol at the root

of τ(Tγ(p,t)) coincides with the non-terminal symbol at the location t. Since G1 is a context-free
grammar, the graft is well-defined, and τ(T) will belong to treeG1(α(x)) as desired. �

FIG. 1: Computing τ(T). Above, p is a production (i.e. tree of depth 1), β(p) is a tree, s and t are
leaves labeled with non-terminal symbols such that s = γ(p, t). x and α(x) are the labels of the
roots.

Obviously, one can rewrite the above recursive definition into an algorithm to compute τ(T) by
bottom-up induction on T , from leaves toward the root. Note that if depth(T) = 1, that is, T is a
production x→ s in G0, then τ(T) ends up being the same as β(T).

We will sometimes consider the induced translation τ as a multi-valued mapping

L̂G0(x)→ L̂G1

(
α(x)

)
.

Indeed, for each u ∈ L̂G0(x), there is a value for each parse tree T of u, namely, the string in
L̂G1

(
α(x)

)
generated by τ(T).

Proposition 2.4. For any x ∈ N0 and u ∈ LG0(x) with parse tree T , τ(T) generates a string in
LG1

(
α(x)

)
.

Proof. By induction on the depth of T . depth(T) = 0 is impossible, since x is assumed non-
terminal and u is a string of terminals. If depth(T) = 1, then T consists of the single production
x → u ∈ G0. The leaves of τ(x → u) = β(x → u) must consist of terminals. Indeed, if there
was a leaf labeled with a non-terminal, then γ(x → u,−) would need to map its location to the
location of some non-terminal in u, but u does not contain any non-terminals. So τ(T) = β(x→ u)
generates a string in LG1

(
α(x)

)
.

If depth(T) > 1, then τ(T) is, by the definition, the result of grafting trees of the form τ(Ts),
for subtrees Ts of T , onto those leaves of β(x→ s) that contain non-terminals. Using the induction

MORPHISMS OF CONTEXT-FREE GRAMMARS 9

hypothesis, all leaves of τ(Ts) are labeled with terminal symbols; hence τ(T) generates an element
of LG1

(
α(x)

)
as well. �

Let us summarize the discussion so far:

Corollary 2.5. A morphism (α, β, γ) of context-free grammars from G0 to G1 induces a function,
for each x ∈ N0, from treeG0(x) to treeG1(α(x)). This induces, in turn, a multi-valued function
from L̂G0(x) to L̂G1

(
α(x)

)
, which restricts to a multi-valued function from LG0(x) to LG1

(
α(x)

)
.

If G0 is an unambiguous grammar, then the latter two maps are single-valued.

Example 2.6. Returning to our motivating example (b), consider the source alphabet

N0 = { expr }
T0 = { ~ � x1 x2 . . . xi . . . }

Let the grammar G0 consist of the productions

expr→ x1 | x2 | . . . | xi | . . .
expr→ expr ~ expr

expr→ expr � expr

Now consider the target grammarG1 with identical alphabetN1 = N0, T1 = T0 but productions

expr→ x1 | x2 | . . . | xi | . . .
expr→ ~ expr expr

expr→ � expr expr

There is a morphism from G0 to G1 with components α, β, γ defined by

• α(expr) = expr
• β(expr→ x) = x for any variable x; note that γ(expr→ x,−) has empty domain
• β(expr→ expr ~ expr) = ~ expr expr with γ(2) = 1 and γ(3) = 3
• β(expr→ expr � expr) = � expr expr with γ(2) = 1 and γ(3) = 3

(SinceG1 is unambiguous, there is no loss in writing the values of β as strings, as opposed to parse
trees. The first argument of γ is suppressed for the sake of readability; numbers refer to locations
of non-terminal symbols, as before.) For any u ∈ LG0(expr), the values of τ(u) will be the prefix
forms of the parses of u.

Before moving on to compositions of morphisms and the rest of our motivating examples, let us
make a series of remarks.

• The definition of morphism of grammars, as given above, appears out of the blue, and in
somewhat austere generality. Admittedly, the definition, like most in the realm of algebra, is
‘experimental’, and driven by several, not easily formalizable criteria. It should cover enough
cases of interest, seemingly not otherwise connected; it should possess good structural properties;
and should have a family, or conceptual resemblance to other notions that have proved useful.

10 TIBOR BEKE

As for the instances of morphisms of grammars in mathematical syntax, I am hopeful this article
provides quite a few. The desired structure theory is phrased in the language of categories; see
below. As for family resemblances, there exist significant overlaps between the formalisms of tree
transducers, term rewrite systems and context-free language transformations, discussion of which
would take us far afield. Suffice it to say that the notion of morphism of grammars is most similar
to (and in fact, properly contains) synchronous context-free grammars (SCFG); see e.g. Chapter
23 of [AS10]. SCFG are themselves notational variants of the syntax-directed translation schemata
of Aho and Ullman [AU72]. The differences are quite significant:

- unlike SCFG, morphisms assume the existence of source and target grammars, their alpha-
bets linked by a map α

- SCFG pair rules with rules; morphisms associate to each rule in the source grammar a
parse tree in the target grammar

- in a SCFG, each re-indexing map is a permutation of non-terminal symbols; in a morphism,
the re-indexing datum γ(x → s,−) is a map from the locations of non-terminal symbols
in β(x→ s) to the locations of non-terminal symbols in s.

Thus, because of the presence of repeated variables, our motivating example (a) could not be
handled by a SCFG. Nonetheless, it is fair to think of morphisms of grammars as syntax-directed
translation schemes, boosted to their ‘natural level of generality’.

• Recall that our grammars do not contain preferred start symbols; a morphism of grammars
induces a multi-valued map

L̂G0(x)→ L̂G1

(
α(x)

)
for each non-terminal x in the alphabet A0 of G0. It may well happen that for some u ∈ A∗0, there
exist distinct x0, x1 ∈ N0 such that u ∈ L̂G0(x0) and u ∈ L̂G0(x1), and the translation(s) into L̂G1

differ when u is considered as a descendant of x0 from when it is considered a descendant of x1.

• The language of iterated commutators, cf. Example 2.2, could be more succinctly defined with
the help of a single non-terminal symbol expr and productions

expr→ x1 | x2 | . . . | xi | . . .
expr→ [expr, expr]

However, as long as one prefers to put parentheses around compound expressions, but not around
individual variables in the language of terms with infix operators − and ·, one needs both of the
syntactic categories var and expr in the target language. This, in turn, necessitates that the source
language should distinguish variables from compound expressions; hence the more labored gram-
mar G0 of Example 2.2. This observation highlights that our morphisms are defined between
context-free grammars, and are sensitive to the choice of grammar, even for unambiguous lan-
guages.

• What seems to be conspicuously missing from the definition of morphism is how the termi-
nal symbols get translated. Indeed, the function α that is part of the morphism data goes from
non-terminal symbols to non-terminal symbols. Of course, the function β is responsible for the
translation of terminals, since terminals occurring in the language can be reached from the source

MORPHISMS OF CONTEXT-FREE GRAMMARS 11

non-terminal via productions. In fact, the reader may enjoy working the following out. Let T0, T1
be alphabets. Recall that any map h : T0 → T ∗1 induces a semigroup homomorphism h : T ∗0 → T ∗1 .
(The reuse of the letter ‘h’ should cause no confusion.) For a language L ⊆ T ∗0 , h restricts to a
map h : L→ T ∗1 . Maps of this type are called literal homomorphisms.

Exercise. Let G0 be a context-free grammar in the alphabet N0 t T0 and T1 another set of
terminals. Let h : T0 → T ∗1 be a map, inducing a literal homomorphism h : LG0(x) → T ∗1 for
each x ∈ N0. Show that there exists a context-free grammar G1 in the alphabet N0 t T1 and a
morphism of grammars G0 → G1 whose associated translation τ : LG0(x) → LG1(x) is single-
valued and satisfies τ(u) = h(u) for all u ∈ LG0(x), any x ∈ N0. (Hint: extend h to a semigroup
homomorphism (N0 t T0)∗ → (N0 t T1)∗ by setting h(x) = x for x ∈ N0. α is the identity. Now
let β(x→ s) = h(s).)

That is, any literal homomorphism can be induced by a morphism of grammars. Similarly, any
rational transducer (thought of as a multi-valued mapping from its domain to its range, both being
rational languages) can be encoded via a morphism of grammars. The details of this encoding are
straightforward, but will be skipped here. It is unlikely that the notion of morphism of grammars
will have anything to add to the very fine-tuned theory of rational transducers.

The next proposition is a simultaneous extension of Prop. 2.4 and of the defining property of the
re-indexing map γ from the definition of morphism.

Proposition 2.7. Let (α, β, γ) be a morphism of context-free grammars from G0 to G1, x ∈ N0

and T ∈ treeG0(x). There is a natural map γ(T,−) from NT(τ(T)) to NT(T) such that for any
t ∈ NT(τ(T)),

α
(
label(γ(T, t))

)
= label(t) .

Proof. By induction on the depth of T . If depth(T) = 0 then T consists of just the root x ∈ N0,
and τ(T) is the tree containing only the root α(x) ∈ N1. So NT(T) = {x} and NT(τ(T)) =
{α(x)}; γ(T,−) is uniquely determined.

If depth(T) > 0, recall how τ(T) is defined. Let p ∈ G0 be the top production in T . As before,
this induces subtrees Ts of T with roots s ∈ NT(p). For each t ∈ NT(β(p)), graft the tree τ(Tγ(p,t))
on β(p) with t as root. τ(T) is defined to be the resulting tree.

Consider any t ∈ NT(β(p)) and let s = γ(p, t). Since depth(Ts) < depth(T), by the induction
hypothesis there is a map γ(Ts,−) from NT(τ(Ts)) to NT(Ts), with α as left inverse to the action
of γ(Ts,−) on labels. When grafting τ(Ts) to β(p), the domain of γ(Ts,−) can be shifted with it,
to become a subset of NT(τ(T)).

However, NT(τ(T)) is the disjoint union of the various NT(τ(Ts)) grafted to β(p), with
s = γ(p, t), as t ranges over NT(β(p)). γ(T,−) can thus be defined as the disjoint union of
the (appropriately shifted) maps γ(Ts,−). �

12 TIBOR BEKE

FIG. 2: Defining γ(T,−). Above, p is a production (i.e. tree of depth 1), β(p) is a tree, s1, s2, t1
and t2 are leaves labeled with non-terminal symbols such that s1 = γ(p, t1) and s2 = γ(p, t2).

Note that if T is a production x → s ∈ G0 then γ(T,−), as constructed above, coincides with
γ(x→ s,−) that is part of the morphism data; there is thus no conflict of notation.

Observe also that when T is a parse tree of some string u containing only terminal symbols then
the leaves of τ(T) cannot contain non-terminals either (since no map γ(T,−) with the properties
above could exist); so we indeed have an extension of Prop. 2.4.

Our choice of terminology insinuates that morphisms can be composed, and, with context-free
grammars as objects, form a category. We will treat this next.

Definition 2.8. Let G0, G1, G2 be context-free grammars, and let (α01, β01, γ01) be a morphism
from G0 to G1, and (α12, β12, γ12) a morphism from G1 to G2. Define their composite

(α02, β02, γ02) = (α01, β01, γ01) ? (α12, β12, γ12)

a morphism from G0 to G2, as follows:

α02 is the composite N0
α01−−→ N1

α12−−→ N2.

Let x → s (abbreviated as p) be a production in G0. Set β02(p) = τ12
(
β01(p)

)
, where τ12 is the

induced translation from treeG1(y) to treeG2

(
α12(y)

)
, for y ∈ N1. Note that β02(x → s) is an

element of treeG2(α12(α01(x))), i.e. of treeG2(α02(x)), as required.

γ02(p,−) is to be a map from NT(β02(p)) to NT(p). It is defined as the composite

NT
(
τ12(β01(p))

) γ12(β01(p),−)−−−−−−−→ NT(β01(p))
γ01(p,−)−−−−−→ NT(p)

More plainly, a production p ∈ G0 is translated by β01 into a parse tree T1 formed with G1,
which τ12 translates into a parse tree T2 formed with G2. The re-indexing map γ12(β01(p),−) goes
from leaves of T2 labeled with non-terminal symbols to leaves of T1 labeled with non-terminal
symbols, followed by the re-indexing map γ01(p,−) from leaves of T1 labeled with non-terminal
symbols, to leaves (i.e. letters on the right-hand side) of the production p that are non-terminal
symbols.

As a continuation of Example 2.6, it is instructive at this point to construct grammarsG0,G1,G2

for prefix resp. postfix resp. fully parenthesized infix terms of binary function symbols ~ and �,

MORPHISMS OF CONTEXT-FREE GRAMMARS 13

and morphisms Gi → Gj (i, j ∈ {0, 1, 2}) that form a commutative diagram of isomorphisms. Of
course, one expects more: a commutative diagram of (iso)morphisms of grammars should induce a
commutative diagram of (bijective) mappings between the associated languages. That is indeed so.
To prove it, we need a key structural property of τ . By definition, the translation τ(T) of a parse
tree T can be generated by attaching to the translation of the top production in T the translations
of the sub-trees of the top production — appropriately re-indexed. The next lemma states that the
same recipe applies if one separates any top segment, not necessarily just the top production, of
the input tree. The necessary re-indexing is supplied by Prop. 2.7.

Lemma 2.9. Let x ∈ N0 and T ∈ treeG0(x). For each s ∈ NT(T), suppose given Us ∈
treeG0(label(s)). Let TU ∈ treeG0(x) be the result of grafting each Us to s as root. Now, for
each t ∈ NT(τ(T)), graft τ(Uγ(T,t)) to τ(T) with t as root. Let τ(T)τ(U) ∈ treeG1(α(x)) be the
resulting tree. Then τ(TU) = τ(T)τ(U).

FIG. 3: Modularity of τ(T). s and t are leaves labeled with non-terminal symbols
such that s = γ(p, t). x and α(x) are labels of the roots. Note the similarity with
Fig. 1.

Proof. By induction on depth(T). When depth(T) = 0, the lemma is a tautology. When
depth(T) = 1, it is the inductive step in the definition of τ (applied to the tree TU , whose top
production is T).

If depth(T) > 1, let p ∈ G0 be the top production in T . As before, this induces subtrees Tr of
T with roots r ∈ NT(p). The set of leaves of T with non-terminal labels, NT(T), is the disjoint
union of NT(Tr) as r ranges over NT(p). For each r ∈ NT(p), let Tr,U be the tree that results from
grafting Us to s for each s ∈ NT(Tr). Tr,U is thus the same as the subtree of TU with r as root.

τ(TU) (by the inductive step in the definition of τ) is the result of grafting τ(Tγ(p,v),U) to v, for
v ranging over NT(β(p)). Pick such a v ∈ NT(β(p)) and let r = γ(p, v). Since depth(Tr,U) <
depth(T), by the induction hypothesis τ(Tr,U) is the same as the result of grafting, for each t ∈
NT(τ(Tr)), τ(Uγ(Tr,t)) to t as root. As v ranges over NT(β(p)), this assembles to the same tree
as τ(T) with τ(Uγ(T,t)) grafted to t for each t ∈ NT(τ(T)). But that is the same as τ(T)τ(U) by
definition, completing the induction step. �

Proposition 2.10. If G0, G1, G2 are context-free grammars and (α01, β01, γ01) : G0 → G1 resp.
(α12, β12, γ12) : G1 → G2 morphisms of grammars, with composite (α02, β02, γ02) : G0 → G2 and
associated translation functions τ01, τ12 and τ02. Then for all x ∈ N0 and T ∈ treeG0(x),

τ12
(
τ01(T)

)
= τ02(T) in treeG2(α02(x)) .

14 TIBOR BEKE

Proof. When depth(T) = 0, this reduces to α12

(
α01(x)

)
= α02(x). When depth(T) > 0, let

p be the top production in T , inducing subtrees Ts with roots s ∈ NT(p) as before. τ01(T), by
definition, is the result of grafting τ01(Tγ01(p,t)) to t for each t ∈ NT(β01(p)). τ12 of that composite
tree, by Lemma 2.9, is the result of grafting τ12

(
τ01(Tγ01(p,t))

)
, with t = γ12(τ12(β01(p)), r), to

r ∈ NT(τ12(β01(p))). But that is the same as the translation of T under τ02, by definition of the
composite of two morphisms. �

Proposition 2.11. The composition of morphisms of context-free grammars is associative. That is,
if Gi (i = 0, 1, 2, 3) are context-free grammars, and µi,i+1 = (αi,i+1, βi,i+1, γi,i+1) morphisms from
Gi to Gi+1 (here i = 0, 1, 2) then

µ01 ? (µ12 ? µ23) = (µ01 ? µ12) ? µ23 .

Proof. The component α03 of G0 → G3 is the composite

N0
α01−−→ N1

α12−−→ N2
α23−−→ N3 .

As regards β03 : given p ∈ G0, µ01 ? (µ12 ? µ23) associates to it τ13
(
β01(p)

)
, while (µ01 ? µ12) ? µ23

sends it to τ23
(
β02(p)

)
. But both of those equal τ23

(
τ12(β01(p))

)
, by Prop. 2.10.

Finally, γ03(p,−), computed either way, is the composite

NT
(
τ23

(
τ12(β01(p))

)) γ23(τ12(β01(p)),−)−−−−−−−−−−→ NT
(
τ12(β01(p))

) γ12(β01(p),−)−−−−−−−→ NT(β01(p))
γ01(p,−)−−−−−→ NT(p)

�

Definition 2.12. Let CFG be the category whose objects are context-free grammars, with mor-
phisms defined by Prop. 2.1 and composition defined by Prop. 2.8. The identity morphism on G is
given by (idN , idG, idNT(p)), i.e. identity maps.

We are now ready to assemble Prop. 2.3, Cor. 2.5, Prop. 2.10 and Prop. 2.11 into the main
theorem of this paper. Intuitively, it says that tree is a functor from CFG to the category of sets.
However, since we did not include a preferred start symbol in the data for context-free grammars
(and much less did we assume that any such symbol would be preserved by morphisms), the target
category is slightly more complicated. Let Mor(Set) be the category of maps of sets. An object of
Mor(Set) is thus a function f : X → Y between arbitrary sets; a morphism from f1 : X1 → Y1 to
f2 : X2 → Y2 consists of maps u : X1 → X2 and v : Y1 → Y2 such that

X1

f1 ��

u
// X2

f2��

Y1
v
// Y2

commutes. Morphisms are composed ‘horizontally’. Mor(Set) is an example of a diagram cat-
egory (see e.g. MacLane [CWM]), but an alternative way to think of it is as the category of sets
fibered over a base: f : X → Y can be thought of as the family of sets f−1(y) with y ∈ Y .
Morphisms are then fiberwise maps.

Theorem 2.13. (a) tree is a functor CFG → Mor(Set). It associates to a context-free gram-
mar G the family of sets {treeG(x) | x ∈ N}. To a morphism of grammars G0 → G1 it

MORPHISMS OF CONTEXT-FREE GRAMMARS 15

associates the map of families α : N0 → N1 and τ : treeG0(x) → treeG1(α(x)), where
x ∈ N0.

(b) Let UCFG be the full subcategory of CFG whose objects are the unambiguous context-free
grammars. L̂ is a functor UCFG → Mor(Set). It associates to a context-free grammar G
the family of sets {L̂G(x) | x ∈ N}. To a morphism of grammars G0 → G1 it associates
the map of families α : N0 → N1 and f : L̂G0(x) → L̂G1(α(x)) with x ∈ N0, that sends
u ∈ L̂G0(x) to the sentential form generated by τ(T (u)), where T (u) is the (unique) parse
of u.

(c) L, sending G to the family {LG(x) | x ∈ N}, is a subfunctor of L̂.

There exists a well-understood interplay between rational languages, finite state automata, and
monoid objects in categories; the canonical reference is Arbib [AA69]. Category-theoretic proper-
ties of CFG (for example, the existence of pullbacks, filtered colimits or coproducts) as well as the
roles that morphisms, functors, natural transformations etc. may play in formal language theory at
higher levels of the Chomsky hierarchy, are much less explored.

3. LOOKING AHEAD

We have only dealt with two of the motivating examples. Neither of the other two can be
described by a morphismG→ GwhereG is any of the usual unambiguous context-free grammars
for first order logic, or, I suspect, any context-free grammar for it. It should come as no surprise
that there are limitations to the ‘word processing power’ of morphisms, as defined above. One
expects that there exists a hierarchy of mappings between context-free grammars, just as there
are hierarchies of languages, complexity classes, and so on. The goal of this final — much more
speculative — section is to sketch further levels of this hierarchy. But first, here is one expression
of the structural limitations of morphisms.

Proposition 3.1. Suppose (α, β, γ) : G0 → G1 is a morphism of grammars with the property that
for some constant K,

depth(β(p)) 6 K

for all p ∈ G0. Then for all x ∈ N0 and T ∈ treeG0(x),

depth(τ(T)) 6 K · depth(T) .

The proof is by induction on depth(T). Note that such a bound K always exists if G0 is finite;
however, our grammars (and alphabets) were not assumed to be so by default.

Example 3.2. Let L be the language of function terms for an associative binary operation (denoted
by juxtaposition), fully parenthesized, with infinitely many variables available. The alphabet is

N = { expr }
T = { ()x1 x2 . . . xi . . . }

16 TIBOR BEKE

with unambiguous grammar

expr→ x1 | x2 | . . . | xi | . . .
expr→ (expr expr)

Let τ : L → L be the mapping that sends an expression to its leftmost-parenthesized equivalent.
For example,

((x5x3)((x1x3)x2))

is to be sent to
((((x5x3)x1)x3)x2)

If there was a morphism of grammars (α, β, γ) : G→ G inducing τ , it would have to satisfy

β(expr→ xi) = xi

for all i = 1, 2, Since there is only one other production in the grammar, namely,

expr → (expr expr)

Prop. 3.1 would apply. However, for any positive integer d, let T be the term in variables
x1, x2, . . . , x2d whose parse tree (ignoring parentheses) is the complete binary tree of depth d;
e.g. for d = 3:

(((x1x2)(x3x4))((x5x6)(x7x8)))

τ(T) is a left-branching tree, with depth 2d.{depth(τ(T))
depth(T)

| T ∈ treeG(expr)
}

is thus unbounded, and the mapping τ cannot correspond to any morphism of grammars.

This argument does not apply to our motivating example (c), replacement of free occurrences of
a variable x in the input formula φ by some term t, since

depth
(
τx→t(φ)

)
6 depth(φ) + depth(t)

always. (We have silently fixed an unambiguous context-free grammar G for first order logic.)
However, no morphism G→ G induces τx→t(φ). The recursive rules

τx→t(φ ∧ ψ) ⇒ τx→t(φ) ∧ τx→t(ψ)

τx→t(∀yφ) ⇒ ∀yτx→t(φ)

showing that replacement descends the parse tree along boolean connectives and quantification
with respect to variables other than x, conform perfectly to the combinatorial possibilities of a
self-morphism of G. However, one has

(∗) τx→t(∀xφ) ⇒ ∀xφ
since all free occurrences of x in φ become bound in ∀xφ. τx→t(∀xφ) is thus not a function of
τx→t(φ), since φ cannot in general be reconstructed from τx→t(φ). So τx→t cannot be computed by
bottom-up induction, whereas translations induced by morphisms can always be.

Intuitively, a morphism of grammars applies the same functional transformation (itself!), iter-
atively, to subtrees of the input tree, whereas (∗) calls on a different transformation (namely, the

MORPHISMS OF CONTEXT-FREE GRAMMARS 17

identity) when the input has the form ∀xφ. Recall that two functions f, g : N → N are defined by
simultaneous recursion if f(0) and g(0) are given, and there exist functions F and G such that for
n > 0,

f(n) = F
(
n, f(n− 1), g(n− 1)

)
g(n) = G

(
n, f(n− 1), g(n− 1)

)
.

In the presence of a pairing function that codes the ordered pair 〈f(n), g(n)〉 as a single natural
number, simultaneous recursion can be replaced by ordinary recursion. However, for tree transfor-
mations, simultaneous recursion on syntax has more expressive power than simple recursion.

Definition 3.3. Let G0 and G1 be context-free grammars in the alphabets N0, T0, N1, T1 as usual,
and k a positive integer. A k-morphism from G0 to G1 defined by simultaneous recursion consists
of the following data:

• mappings αi : N0 → N1 for i = 1, 2, . . . , k
• mappings βi, for i = 1, 2, . . . , k, assigning to each production x → s ∈ G0 a parse tree

from treeG1(αi(x))
• for each i = 1, 2, . . . , k and each production p ∈ G0, a function γi(p,−) from NT(βi(p))

to NT(p) and a function δi(p,−) from NT(βi(p)) to {1, 2, . . . , k}, with the property that for
all i = 1, 2, . . . , k and all t ∈ NT(βi(p)), writing j = δi(p, t),

αj
(
label(γi(p, t))

)
= label(t) .

A k-morphism is, roughly, a k-tuple of grammatical transformations that are intertwined via the
function δ: the i-th transformation can call on the j-th transformation to act on a subtree of the
input tree. The maps αi provide the initial values. There is no circular dependency, since each
recursive call applies to a lower-level subtree of the input tree. More precisely,

Proposition 3.4. A k-morphism of grammars from G0 to G1 induces, for each i = 1, 2, . . . , k and
x ∈ N0, a mapping

τi : treeG0(x)→ treeG1(αi(x)) .

Proof. For T ∈ treeG0(x), define the τi(T) ∈ treeG1(αi(x)) simultaneously by induction on the
depth of T :

• If depth(T) = 0, then T must be x itself, and τi(T) is defined to be αi(x).
• If depth(T) > 0, let x → s ∈ G0 be the top production in T . Write p for x → s for brevity.
As usual, NT(p) can be identified with a subset of s, the locations of the non-terminal symbols in
s. Since G0 is context-free, each s ∈ NT(p) induces a subtree Ts of T with s as root. For each
i = 1, 2, . . . , k and t ∈ NT(βi(p)), writing j = δi(p, t), graft the tree τj(Tγi(p,t)) on βi(p) with t as
root. τi(T) is defined to be the resulting tree.

Since depth(Ts) < depth(T) for all s ∈ NT(p), τj(Ts) is defined by the induction hy-
pothesis. Note that τj(Ts) belongs to treeG1(αj(label(s)) by the induction assumption, and
αj
(
label(γi(p, t))

)
= label(t) by Def. 3.3. That is, the non-terminal symbol at the root of

τj(Tγi(p,t)) coincides with the non-terminal symbol at the location t. Since G1 is a context-free
grammar, the graft is well-defined, and τi(T) will belong to treeG1(αi(x)) as desired. �

18 TIBOR BEKE

When finding τi(T) by recursion from root to leaves on T , one can restrict to computing τj(Ts)
only for those subtrees Ts of T and values j ∈ {1, 2, . . . , k} that are called for by the indexing func-
tion δ. When using bottom-up induction, the entire k-tuple of values

(
τ1(−), τ2(−), . . . , τk(−)

)
needs to be computed for all subtrees of T .

Mutatis mutandis, the results of the previous section, from Prop. 2.3 to Prop. 3.1, remain valid
for morphisms defined by simultaneous recursion. The composition of a k-morphism from G0

to G1 and n-morphism from G1 to G2 will be a k · n-morphism from G0 to G2. Composition
is associative, and treeG becomes a functor from CFG to tuples of functions of sets. The details,
while not conceptually complicated, are quite tedious (largely for notational reasons) and will not
be needed here.

The reader is invited to define the pair of transformations (τx→t, id) by simultaneous recursion
on the syntax of first order logic. τx→t calls itself and id, while the identity transformation calls
itself only. The fact that the treatment of descendant nodes is inherited from their parent nodes is
reminiscent of attribute grammar.

Note that φx→t, replacing all free occurrences of the variable x in the formula φ by the term t,
is the least complicated of the multitude of operations involving variable replacement and binding.
If a free variable in t is captured by a quantifier in φ, then φ will no longer imply its instance
φx→t; to preserve the intended logical meaning, the dummy variable appearing in the capturing
quantifier in φ should be renamed first, to a variable not occurring in φ or t. However, the function
that returns a variable not occurring in a given formula does not have a canonical value, and is
not easily describable in terms of language operations. A related, and much researched, issue is
the formalization of explicit substitution in lambda calculi [ES90]: under explicit substitution, the
operation x → t does not belong to the meta-language, but is part of the language itself. On the
other hand, there seem to exist few studies, from the viewpoint of mathematical linguistics, of the
syntax of substitutions through de Bruijn indices or Bourbaki’s variable-free notation [TL99].

Prop. 3.1 does not apply either to our fourth (and last) motivating example, transforming first
order formulas φ to negation normal form NNF(φ), since depth(NNF(φ)) 6 depth(φ) always.
But NNF cannot be induced by a morphism, or in fact k-morphism. The standard context-free
grammars of first order logic contain the production

expr → q expr
But β(expr → q expr) cannot contain any terminal symbols; any non-terminal other than ‘expr’; or
more than one copy of ‘expr’: each of those possibilities would be inconsistent with the fact that
NNF(qqφ) = NNF(φ). So β(expr → q expr) is forced to be ‘expr’, which of course is incompatible
with the negation normal form of qφ for atomic φ.

MORPHISMS OF CONTEXT-FREE GRAMMARS 19

Intuitively, the issue is that the rewrite rules

qqφ ⇒ φ

q(φ ∧ ψ) ⇒ qφ∨ qψ
q(φ ∨ ψ) ⇒ qφ∧ qψ
q∀xφ ⇒ ∃xqψ
q∃xφ ⇒ ∀xqψ

may introduce new instances of the negation symbol on their right hand sides. It requires a moment
of thought to verify that this set of rules is noetherian (starting with any formula, they cannot be
applied infinitely often) and many more moments of thought to verify that they are confluent (every
formula has a unique negation normal form, even if the above rewrite rules are applied to arbitrary
subformulas first, in any order, until no rule applies anywhere).

Recall that a term rewrite system (TRS) is an unordered set of rewrite rules acting on function
terms in some fixed signature. A TRS is called convergent if it is both noetherian and conflu-
ent [TR98]. All four motivating examples, and Example 3.2 as well, belong to the family of
convergent TRS, adapted from the unambiguous grammar of function terms to the general setting
of context-free grammars. The fact that the effect of morphisms on parse trees can be computed
by both bottom-up and top-down recursion, as well as Lemma 2.9, can be seen as corollaries of
confluence.

It is quite challenging, however, to fashion a category out of convergent TRS. To begin with,
neither the confluence nor the noetherianness of TRS is, in general, decidable (though, curiously,
the confluence of noetherian TRS is decidable). Secondly, a famous example due to Toyama shows
that the disjoint union of two convergent TRS need not be convergent. Thus the composite of two
TRS cannot, in general, be defined as the disjoint union of their underlying rules. There exist,
however, sufficient conditions for the modularity of convergence for TRS. Alternatively, one can
experiment with ordered (prioritized) rewriting rules.

In a different direction, the notion of morphism of context-free grammars could be broadened
to allow for non-determinism: several right-hand sides of the component β. Finally, the focus on
parse trees is, to some extent, restrictive: the domain of these transformations could be any set of
node-labeled rooted trees closed under taking subtrees.

I hope to elaborate some of these ideas in later publications. In closing, let me return to the quote
from Chomsky that opened this article. Suppose that the only gift linguistics ever gave mathemat-
ics was, indeed, the notion of context-free grammar. Let’s play with this present: expand the focus
from context-free grammars to maps of context-free grammars (from objects to morphisms) and I
think we will agree that linguistics has given mathematics a gift that keeps on giving.

20 TIBOR BEKE

REFERENCES

[AA69] M. Arbib: Theories of abstract automata. Prentice–Hall, 1969
[AS10] Algorithms and Theory of Computation Handbook. Vol 2: Special Topics and Techniques. Ed. by M. Atallah

and M. Blanton. 2nd ed., Chapman & Hall, 2010
[AU72] A. Aho and J. Ullman: The Theory of Parsing, Translation, and Compiling. Vol 1: Parsing. Prentice–Hall,

1972
[CWM] S. MacLane: Categories for the Working Mathematician. 2nd ed., Springer–Verlag, 1998
[ES90] M. Abadi, L. Cardelli, P.-L. Curien, J.-J. Lévy: Explicit substitutions. Digital Systems Research Center

Technical Report SRC-RR-54, 1990
[GE82] Noam Chomsky on The Generative Enterprise: A Discussion with Piny Huybregts and Henk van Riemsdijk,

Foris Publications, Dordrecht–Holland 1982
[GE04] The Generative Enterprise Revisited: Discussions with Riny Huybregts, Henk Van Riemsdijk, Naoki Fukui,

and Mihoko Zushi. With a New Foreword by Noam Chomsky. de Gruyter, 2004
[M10] E. Mendelson: Introduction to Mathematical Logic. 5th edition, Chapman & Hall, 2010
[TL99] A.R.D. Mathias: A term of length 4,523,659,424,929. Preprint, 1999

Available at www.dpmms.cam.ac.uk/˜ardm/inefff.pdf
[TR98] F. Baader and T. Nipkow: Term Rewriting and All That. Cambridge University Press, 1998

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS, LOWELL, ONE UNIVERSITY AVENUE,
LOWELL, MA 01854

E-mail address: tibor beke@uml.edu

www.dpmms.cam.ac.uk/~ardm/inefff.pdf

	1. Introduction
	2. Morphisms of grammars
	3. Looking ahead
	References

