
SHEAFIFIABLE HOMOTOPY MODEL CATEGORIES, PART II

TIBOR BEKE

Abstract. If a Quillen model category is defined via a suitable right adjoint over a sheafi-
fiable homotopy model category (in the sense of part I of this paper), it is sheafifiable as
well; that is, it gives rise to a functor from the category of topoi and geometric morphisms
to Quillen model categories and Quillen adjunctions. This is chiefly useful in dealing with
homotopy theories of algebraic structures defined over diagrams of fixed shape, and unifies
a large number of examples.

Introduction

The motivation for this research was the following question of M. Hopkins: does the forgetful
(i.e. underlying “set”) functor from sheaves of simplicial abelian groups to simplicial sheaves
create a Quillen model structure on sheaves of simplicial abelian groups? (Creates means
here that the weak equivalences and fibrations are preserved and reflected by the forgetful
functor.) The answer is yes, even if the site does not have enough points. This Quillen
model structure can be thought of, to some extent, as a replacement for the one on chain
complexes in an abelian category with enough projectives where fibrations are the epis.
(Cf. Quillen [39]. Note that the category of abelian group objects in a topos may fail to
have non-trivial projectives.) Of course, (bounded or unbounded) chain complexes in any
Grothendieck abelian category possess many Quillen model structures — see Hovey [28] for
an extensive discussion — but this paper is concerned with an argument that extends to
arbitrary universal algebras (more precisely, finite limit definable structures) besides abelian
groups. (The case of sheaves of simplicial groups was treated as early as 1984 by Gillet and
Soulé in a preprint that has been published only recently [20].)

The problem we face is precisely that considered in the first part of this paper: how does
one pass from a homotopy theory of algebraic structures to a homotopy theory of sheaves
thereof? In the prequel it was suggested that a more comprehensive answer can be obtained
at the price of employing a syntactic calculus stronger than coherent logic to specify the
cofibrations. The goal of the first section is to introduce this calculus. The second section
of this note proves the theorem stated in the abstract, while the third lists examples from
“nature”: that is, algebraic homotopy theories from the literature to which the main theorem
applies. In the last section, it is shown that for sheafifiable homotopy model theories one
can perform localization along a geometric morphism, and use presheaves to model the
homotopy theory of sheaves. These properties were first discovered by Goerss–Jardine [21]
resp. Jardine [31] for simplicial objects.
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Familiarity with the first two sections of part I of this paper is helpful. Its notational and
terminological conventions are retained.

1. Definable functors

The picturesque road to functors defined in terms of limits and colimits leads through
sketches. (See Adámek–Rosický [1], Borceux [8] vol.II., or Barr–Wells [2] for detailed treat-
ments.) Recall that a sketch is a diagram D together with a set U of cones and V of cocones
in D. That is, U is a set of functors {U+

λ → D | λ ∈ Λ} where U+
λ is the categorical cone on

a small diagram Uλ; dually for V . A model of a sketch S := (D, U, V ) in a category E is a
functor D → E that takes elements of U to limiting cones, and elements of V to colimiting
cocones. This defines S(E), the category of S-structures in E, as a full subcategory of the
functor category ED.

S = (D, U, V ) is called a coherent (or geometric) sketch if each Uλ has finitely many
arrows. If, in addition, V is empty, S is a finite limit sketch. The size of S is the cardinality
of the disjoint union of all arrows contained in D, U and V .

A morphism of sketches (D1, U1, V1)
m−→ (D2, U2, V2) is a functor D1 → D2 composition

with which maps elements of U1 into U2, V1 into V2. It induces a functor S2(E)→ S1(E).

Definition 1.1. A sketch morphism S1 → S2 is rigid if for any topos E, the induced functor
S2(E)→ S1(E) is an equivalence.

Example 1.2. Let D1 be the category with a single object • and its identity morphism, U1

and V1 empty. Let D2 be the category

• ⋆hh
vv

let U2 contain only the cone

•
⋆

iiSSSSS

uukkk
kk

•
with the obvious “folding” functor into D2, and let V2 be empty. The inclusion of • into
D2 is a rigid sketch morphism. This is just the categorical truism that up to canonical
isomorphism, any object has one cartesian square.

Example 1.3. Let D1 be the discrete category on two objects, {1} and {2}. U1 and V1 are
empty. Let D2 be the commutative square

• //

��

{1}

��

{2} // ⋆
which is actually the cone on {2} → ⋆ ← {1}. Let U2 be the identity functor on D2, and
let V2 contain two cocones: the object • (thought of as a cocone on the empty diagram)



SHEAFIFIABLE HOMOTOPY MODEL CATEGORIES, PART II 3

and {2} → ⋆ ← {1}. What this says is that ⋆ is the coproduct of {1} and {2}, • is the
“intersection” i.e. pullback of the summands, and • is simultaneously an initial object.

The inclusion D1 ↪→ D2 is a rigid sketch map. That is to say, binary coproducts are
disjoint. This is not at all a tautology of limits and colimits, but is true in a topos.

Definition 1.4. A definable functor F from a sketch S1 to a sketch S2 is given by a sketch

G and sketch morphisms S1
s−→ G, S2

t−→ G such that s is rigid. It is said to be coherently,
finite limit resp. countably defined if its graph G is such.

For any topos E, a definable functor induces an actual functor S1(E)
FE−→ S2(E) as the

composite S1(E)
s−1

−→ G(E)
t−→ S2(E). (The indeterminacy of the quasi-inverse s−1 is pre-

cisely the indeterminacy of objects with universal properties, which we assume solved by
choosing, once and for all, functorial limits and colimits.)

Example 1.5. The nerve functor, from category objects to simplicial diagrams in E, is finite
limit definable (for any category E with pullbacks, in fact). Indeed, the notion of category
is definable by a finite limit sketch (the diagram that underlies it is the familiar truncated
simplicial object) and for G take the simplicial indexing category ∆op together with all the
limit cones it contains (they are iterated pullbacks).

Example 1.6. The barycentric subdivisions of the affine simplices combine to give a functor

∆
sd−→ SSet . Recall that Kan’s simplicial extension functor SSet

Ex−→ SSet sends X ∈
SSet to the presheaf homSSet(sd(−), X). Expressing sd(n), n ∈ ∆, as a finite colimit of
representables, one obtains a definition of Ex in terms of finite limits, now valid for any
category of the form E∆op

. An analogous argument shows that any right adjoint between
presheaf topoi is definable in terms of limits.

Example 1.7. Take a finitary single-sorted equational theory of universal algebras, and let
T be the functor Set → Set underlying the free algebra functor. Let D be the (countable)
diagram with objects pairs (X,α) where X is a finite ordinal and α ∈ T (X). An arrow

(X,α) → (Y, β) is a function X
f−→ Y such that T (f)(α) = β. Let U be an object of a

topos E. Consider the functor D op F−→ E that takes (X,α) to U |X| (U to the categorical
power of the cardinality of X) and where F (f) is induced by the projections. colim F is
the free T -algebra on U . (Thinking of universal algebras, after Lawvere, as functors, this
comes from the canonical presentation of a presheaf as colimit of representables.) So, the
functor E→ E taking an object to the one underlying the free T-algebra on it is countably,
coherently definable. With some more work, the structure maps, hence the free algebra
functor E→ ET is definable as well.

The homotopically minded reader is encouraged to skim Lemma 1.9 and Prop. 1.10, then
proceed to section 2.

Coherently definable functors between coherent theories enjoy an equivalent, beautifully
simple definition using classifying topoi. Let B[T ] denote the classifying topos of the coherent
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theory1 T . A sketch morphism T1 → T2 is rigid iff the induced geometric morphism B[T2]→
B[T1] is an equivalence. A definable functor from T1-models to T2-models is a model of T2

in B[T1], that is, geometric morphism B[T1]
F−→ B[T2]. The effect of F on a T1-model in

a topos E, i.e. topos morphism E → B[T1], is composition with F . The classifying topos,
by its very construction, subsumes the intermediate step of enlarging the language of T1 by
coherent definitions — which was G, the “graph” of the functor, as sketched above.

Recall that the classifying topos of a finite limit theory T is a presheaf topos Pre(CT ),
where CT is a small category with finite limits: fpModT (Set)

op, the opposite of the category
of finitely presentable T -models in Set . T is countable iff CT is. A finite limit definable
functor between finite limit theories T1, T2 gives rise to a finite limit preserving functor
CT1 → CT2 between categories with finite limits, namely fpModT1(Set)

op → fpModT2(Set)
op.

It is classified by an essential geometric morphism Pre(CT1)
f−→ Pre(CT2) with a finite limit

preserving far left adjoint f!; that is, “two geometric morphisms in one”: f ∗ ⊣ f∗ and f! ⊣ f ∗.

Remark 1.8. The (co)unit natural transformations for f ∗ ⊣ f∗ show that this pair of geomet-
ric morphisms provides, in the terminology of Joyal–Wraith [34], a natural homotopy equiv-
alence between Pre(CT1) and Pre(CT2). More generally, any coherently definable adjunction
between coherent theories yields a natural homotopy equivalence between classifying topoi.

Lemma 1.9. Let S1, S2 be finite limit sketches, R a finite limit definable functor from S1-

structures to S2-structures. For any topos E, S1(E)
RE−→ S2(E) preserves filtered colimits and

all limits.

The statement is equivalent to the following: if S1
m−→ S2 is a morphism of finite limit

sketches, then the induced functor S2(E)→ S1(E) preserves filtered colimits and finite limits,
for any topos E. Now the diagram

ED2
m∗

// ED1

S2(E)
?�

OO

// S1(E)
?�

OO

(by definition of the bottom functor) commutes. The vertical arrows are inclusions of full,
reflexive subcategories that preserve and reflect all limits and filtered colimits. (Note that
finite limits commute with filtered colimits in a topos.) The top horizontal arrow preserves
all limits and colimits.

Proposition 1.10. Let S1, S2, R be as above. There exists a coherently definable functor L
from S2-structures to S1-structures such that for any topos E,

S1(E)
LE

�
RE

S2(E)

is an adjunction.

1In the context of the classifying topos, we use the term “theory” interchangeably with “sketch”.
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Proof. R is the direct image of a topos morphism; let L be the inverse image. Note that L
is the direct image of a geometric morphism as well. The (co)unit natural transformations
for L ⊣ R

B[S1]

R ##G
GG

GG
GG

G
Id B[S1] B[S1]

R

##G
GG

GG
GG

G

B[S2]
L

;;wwwwwwww

KS

B[S2]

L
;;wwwwwwww

Id

KS

B[S2]

are the universal examples of the adjunction maps. That is to say, fix any topos E, and let
X ∈ S2(E), Y ∈ S1(E). A morphism S1(LX, Y ) is represented by a natural transformation

from E
X−→ B[S2]

L−→ B[S1] to E
Y−→ B[S1]. The composite natural transformation

E

X !!B
BB

BB
BB

B
Y

// B[S1]
R

##G
GG

GG
GG

G

B[S2]
L

;;wwwwwwww

KS

Id

KS

B[S2]

represents the adjoint map in S2(X,RY ). The reverse direction is given by pasting in the
other triangle; that they are inverse bijections follows from the (co)unit identities for L ⊣
R.

Remark 1.11. The deceptive simplicity of the argument is due to the presence of classifying
topoi. For a typical left adjoint of the type above — say, the free universal algebra functor
or the colimit of A∞-algebras — the “recipe” one gets from the proof is quite ineffective.
Nonetheless, one sees that if S1, S2 and R were countable, L can be countably defined as
well.

Remark 1.12. Giraud’s theorem, in effect, provides an axiomatization of all non-trivial “in-
terchange properties” of finite limits and arbitrary colimits, that is, exactness properties of
a Grothendieck topos. Makkai’s [35] provability formalism and completeness theorem for
sketches allows for a syntactic generation of all rigid morphisms, and so a constructive ap-
proach to definable functors, for other semantics as well. ([4] spells out the case of functors
definable on diagram categories, that is, sketches with no cones and cocones, interpreted in
an arbitrary category.)

2. Creating Quillen model structures via right adjoints

For C F−→ D a functor and U a collection of morphisms of D (of C, resp.), write F−1(U) for
{m ∈ C | F (m) ∈ U}; resp. F (U) for {F (m) | m ∈ U}.

Definition 2.1. LetM, with data cof;W; fib be a homotopy model category and C
L

�
R
M

an adjunction. If LLP;R−1(W);R−1(fib) give a Quillen model structure on C, say that model
structure is created by R from the one onM. (Here “LLP” is an abbreviation for the class
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of morphisms having the left lifting property w.r.t. every acyclic fibration, these latter being
R−1(W) ∩R−1(fib).)

Although this kind of situation is as old as Quillen model categories [39], and recurrent
throughout their study, it doesn’t seem to have earned its own name yet. (I owe the nomen-
clature used above to M. Hopkins.) The next proposition gives a sufficient condition for
creation to occur. It has cognates in a great number of papers, e.g. Blanc [7], Cabello–
Garzón [11], Crans [13], Goerss–Jardine [22], Dwyer–Hirschhorn–Kan [15], Quillen [39],
Rezk [40], Spaliński [41]. Recall

Definition 2.2. Let C be a cocomplete category, I any class of morphisms of C.

• Close the class of all pushouts of I under transfinite composition in C. This defines the
class cell(I) of relative I-cellular maps.

• The class cof(I) of I-cofibrations is defined as follows: X
c−→ Y ∈ cof(I) iff c is a

retract of an X
r−→ Z ∈ cell(I) in the category X/C of objects under X.

• I-fibrations, or I-injectives, denoted inj(I), are the morphisms with the right lifting
property w.r.t. I; that is, such that in any commutative square

•
i
��

// •
p

��

•

??

// •
with i ∈ I, p ∈ inj(I), a dotted lift making both triangles commute exists.

Proposition 2.3. LetM be a model category, C
L

�
R
M an adjunction. Suppose

(0) For some set I of maps in M, inj(I) are precisely the acyclic fibrations, and for some
set J , inj(J) are precisely the fibrations. (True, for example, when M is cofibrantly
generated.)

(1) C is (co)complete, and every set of maps of C permits the small object argument. (This
holds, for example, when C is a locally presentable category.)

(2) Weak equivalences are closed under filtered colimits inM.
(3) R preserves filtered colimits.
(4) For any f ∈ J , and any pushout g of L(f) in C, R(g) is a weak equivalence inM.

Then R creates a cofibrantly generated model structure on C.

Proof. Axioms M1, M2, M3, and one half of M4 are gratis. The factorizations needed for
M5 are constructed, of course, via the small object argument. Applying the small object
argument to L(I), we see that every morphism of C can be factored as fc with c ∈ cell(L(I)),
f ∈ inj(L(I)). By adjunction, L(i), i ∈ I, is a cofibration in C; since any LLP class is closed
under the operations occurring in the definition of cell, c is a cofibration in C. Adjointly,
R(f) has the right lifting property w.r.t. every i ∈ I; by definition g an acyclic fibration in
C. Analogously, applying the small object argument to L(J), we see that every map in C
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can be factored as gd with d ∈ cell(L(J), g ∈ fib(L(J)). Since d is a transfinite composition
of pushouts of L(j), j ∈ J , (2), (3), (4) and transfinite induction imply that R(d) is a weak
equivalence inM. R(g) has the right lifting property w.r.t. every j ∈ J , so g is a fibration
in C. By an argument similar to the case of c, d is a C-cofibration. The missing half of M4
follows by the retract argument : given an acyclic cofibration d of C, factor it as he with h
a C-fibration, e ∈ cell(L(J)). By M2, h is an acyclic fibration. Hence the composite he has
the left lifting property w.r.t. h, which works out to mean that d is a retract of e. Since e
had the left lifting property w.r.t. all fibrations, so does d.

Assumptions (2) and (3) are not necessary for the conclusion, but seem to be satisfied in
practice. The next three remarks elaborate these and a related point.

• Property (2) does not seem to follow from Quillen’s axioms. If M is a simplicial model
category, i.e. is enriched over SSet with good interaction between the homotopy model
structures on SSet andM, then something stronger than (2) holds, viz. the weak equivalences
are closed under filtered colimits in the category of morphisms of M. The same holds for
other “good” enrichments, and (for a different reason) for any coherently definable homotopy
model structure; see [5].

• In all algebraic situations I am aware of, creation happens across a finitary adjunction,
i.e. one where the right adjoint preserves filtered colimits, and this is the condition easy to
check. What one exploits in the proof is only that R preserves transfinite compositions of
weak equivalences.

• (4) is necessary for the conclusion: if C
L

�
R
M is to create a model structure, Lmust preserve

acyclic cofibrations, acyclic cofibrations are preserved by pushouts, and R is to preserve weak
equivalences. But this does not make (4) easy to prove a priori.2 Instead, it has the curious
advantage that given it holds for a definable adjunction between Set-based structures, then
it holds for the analogous adjunction between structured sheaves. The present note (and its
predecessor) are concerned precisely with this relative situation.

Theorem 2.4. Let S1 and S2 be finite limit structures, R a functor from S2-structures to
S1-structures defined in terms of finite limits. Let W and C be sets of coherent axioms
in the language of morphisms of S1-structures. Let W(E) := {f ∈ mor S1(E) | f |= W},
C(E) := {f ∈ mor S1(E) | f |= C}. Suppose

• all the syntactic ingredients — S1, S2, R, W , C — are countable

2Indeed, even for the “degenerate” case of C =M = SSet , L,R the identity, I am aware of no elementary
proof of the fact that a pushout of an acyclic cofibration is a weak equivalence. By “elementary”, I mean
a proof proceeding in coherent logic; since the statement is a coherent implication valid in any topos, one
knows by an abstract completeness theorem that such a proof must exist. Note that the use of geometric
realization or minimal fibrations renders a proof non-elementary in this technical sense. The existence of
minimal simplicial fibrations, for example, uses the axiom of choice, and need not hold in a category of
sheaves.
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• for every topos E, S1(E) with weak equivalences W(E) and cofibrations C(E) is a cofi-
brantly generated Quillen model category

• S2(Set)
RSet−−→ S1(Set) creates a homotopy model structure on S2(Set).

Then for every topos E, S2(E)
RE−→ S1(E) creates a Quillen model structure on S2(E).

Proof. Apply Prop. 2.3. (0) is an assumption. The category of models of a finite limit
structure in a locally presentable category (in particular, Grothendieck topos) is locally pre-
sentable, and models of coherent axioms are closed under filtered colimits. (3) is lemma 1.9.
Property (4) holds in E = Set by assumption, for any acyclic cofibration j in fact. But (4)
is a coherent deduction: the original class of cofibrations was coherently definable; apply
Prop. 1.10 to L, the left adjoint to R; that a square be a pushout of S2-structures is co-
herently expressible, and so is the desired conclusion that R(g) be a weak equivalence. By
the theorem of Makkai–Reyes [36] that the countable fragment of coherent logic has enough
models in Set , (4) carries over to an arbitrary topos.

Remark 2.5. The cardinality condition in 2.4 can be bypassed with the proviso that R creates
a Quillen model structure on S2(Sh(B)) for every complete Boolean algebra B, equipped with
its canonical topology.

Remark 2.6. In checking that S2(Set)
RSet−−→ S1(Set) creates a Quillen model structure, one

is not limited to Prop. 2.3. It may be easier to verify Def. 2.1 indirectly, or to exploit special
properties of the category Set .

The description of cofibrations in S1(E) is glaringly non-constructive; this can be amended
somewhat.

Lemma 2.7. Suppose C
L

�
R
M creates a homotopy model structure on C, any set of maps

in C permits the small object argument, and M is cofibrantly generated. Let I be any col-
lection (possibly proper class) of cofibrations inM that includes a generating set. Then the
cofibrations created by R are cof(L(I)).

Indeed, L will take cofibrations to cofibrations, which are closed under the operations
making up cof(−), so cof(L(I)) is a subclass of C-cofibrations. But for any generating set Ig
ofM-cofibrations, cof(L(Ig)) already includes all C-cofibrations by adjunction and the small
object argument.

Corollary 2.8. In Thm. 2.4, cofibrations in S2(E) are cof(LE(C(E))).

Corollary 2.9. 2.4 gives rise to a functor TOPOI → HOMODEL taking E to the model
category S2(E) with weak equivalences R−1W(E), cofibrations cof(L(C(E))).

Just observe that a topos morphism will induce an adjunction between the category of
models, and the inverse image functor preserves weak equivalences and cofibrations.
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3. Examples

Set S1 :=simplicial objects, with cofibrations the monomorphisms and weak equivalences
defined “stalkwise”. It is classical that this satisfies the conditions of Thm. 2.4; see e.g. part
I of this paper for details. Many examples of creation from E∆op

have been discovered. Each
entry has the following format: the adjunction S2(Set) � S1(Set) that defines the homotopy
theory; references to the literature, where applicable; and additional remarks and questions.
Checking that the conditions of 2.4 are satisfied is usually simple, and left to the reader.

Example 3.1. bisimplicial sets: BiSSet
L

�
D

SSet

D is the functor of restriction to the diagonal. The left adjoint L is a left Kan extension.
The theorem that D creates a model structure on BiSSet is due to Moerdijk [37]. It was
extended to bisimplicial objects in a topos by Crans [13]. Note that the methods — if not
the words — of Thm. 2.4 are all contained in Crans’ paper.

Remark 3.2. The adjunction above is in fact a Quillen equivalence, since the unit and counit
maps are weak equivalences. This fact (which is stronger than what is needed to ensure that
a Quillen pair induce an equivalence on the homotopy category) also survives from Set to
sheaves.

Example 3.3. cyclic sets: Pre(Λ)
L

�
i∗

SSet

Λ is Connes’ indexing category of cyclic sets, with a canonical inclusion ∆
i−→ Λ. The left

adjoint L to the forgetful functor i∗ from cyclic to simplicial sets is again a left Kan extension.
Dwyer–Hopkins–Kan [18] prove that i∗ creates a Quillen model structure on cyclic sets. Its
cofibrations enjoy a combinatorial description (a rare exception!); see [18] or [5].

Remark 3.4. The preceding two examples represent an even narrower type of “simplicial
creation”, namely, when the adjunction is one of the form f! : Pre(D) � SSet : f ∗ induced

by a functorD f−→ ∆. In such a case, for f ∗ (i.e. precomposition by f op) to create a homotopy
model structure it is sufficient and necessary that f ∗(f!(i

k
n)) be a weak equivalence in SSet for

each of the horn-inclusions (or “generating acyclic cofibrations”) ikn. To that end, as pointed

out by Dwyer–Hopkins–Kan [18], it is sufficient that D y−→ Pre(D) f!−→ SSet (where y is the
Yoneda functor) be a diagram of weak equivalences in SSet . It would be interesting to have
a criterion directly in terms of f .

Example 3.5. small categories: Cat
nerve−−→ SSet

Ex2−−→ SSet
The right adjoint is the composite displayed above (Ex2 being the double iteration of Kan’s
simplicial extension functor). The left adjoint is C ◦ Sd2, where Sd is Kan’s simplicial
subdivision functor and C is “categorification” of a simplicial set. It is due to Thomason [43]
that the right adjoint creates a homotopy model structure on Cat . (Tagging on the Ex2

at the end leaves the class of weak equivalences in Cat unchanged, but does affect the
(co)fibrations.) Remark 3.2 applies here as well.

Example 3.6. simplicial groupoids: Grpd∆op nerve∆
op

−−−−−→ BiSSet
D−→ SSet

As emphasized by the notation, simplicial groupoids mean here simplicial objects in the
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category of groupoids (equivalently, groupoid objects in SSet) as opposed to the objectwise
discrete simplicial groupoids of Dwyer–Kan [16]. That the above composite creates a model
structure is unpublished work of I. Moerdijk and S. Crans.

Remark 3.7. Small categories, simplicial groupoids and bisimplicial sets are Quillen model
categories with the following in common: they are countable structures defined by finite
limits; their weak equivalences have a countable coherent definition (ditto for fibrations);
and their cofibrations have the form cof(J), J being countably many maps from a countably,
coherently defined class. It is tempting to think of these syntactic properties as being
the equivalent of “combinatorial homotopy” in the world of Quillen’s axioms. The above
examples are actually much closer tied, each being definably Quillen-equivalent to simplicial
sets. I suspect these observations extend to other (intuitively) combinatorial models of
spaces, such as cubical sets, Joyal’s Θ-sets or Golasiński’s homotopy theory of categories
[23], [24].

n-types, that is to say, n-coconnected spaces, possess combinatorial models (in both the
above syntactic and the intuitive senses) as well; we turn to these next.

Example 3.8. groupoids: Grpd
π

�
nerve

SSet

The n = 1 case is classical and simple. π is the fundamental groupoid. The nerve functor
creates a homotopy structure on the category of groupoids, the cofibrations having a very
simple description: functors that are injective on the object part. This model structure was
sheafified in Joyal–Tierney [32] as well.

Example 3.9. 2-groupoids: 2−Grpd
W

�
N

SSet

Here a 2-groupoid is a strict 2-category with all (one and two-dimensional) morphisms strictly
invertible. Taking as morphisms 2-functors preserving all the structure on the nose, they
form a category 2 − Grpd which is the category of models of a finite limit theory.3 N is a
combinatorial nerve functor, W its left adjoint constructed in Moerdijk–Svensson [38]. (The
direct 2-categorical definition of f ∈ 2 − Grpd being a fibration, as given in [38], is in fact
equivalent to N(f) being a Kan fibration.) The corresponding homotopy category is that
of spaces with vanishing homotopy above dimension 2. The sheafified version can also be
found in Crans [13].

Remark 3.10. N (which is also described, for example, in Street [42]) has a more canonical
alternative B: the composite of the iterated nerve 2 − Grpd → BiSSet with the diagonal
BiSSet → SSet . There exists a natural transformation B → N which is in fact always an
acyclic fibration. B takes combinatorial fibrations to Kan fibrations as well. Thus B, if it
creates a homotopy structure too, creates one that is Quillen-equivalent to that due to N .

Example 3.11. 3-groupoids: 3−Grpd
t̂3
�
N3

SSet

The n = 3 case has been worked out by C. Berger [6]. A lax 3-category is a certain partial

3This would fail if one chose as morphisms the “weak homomorphisms” of 2-groupoids, namely functors
that preserve composition of 1-arrows only up to a (coherently chosen) 2-arrow.
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algebraic structure made up of 0, 1, 2 and 3-arrows with source, target and composition
maps, subject to interchange identities that will not be given here. A lax 3-groupoid is a
lax 3-category with all arrows strictly invertible. Taking as morphisms 3-functors preserving
all the structure on the nose, they form the category 3− Grpd . See Berger’s article for the
construction of the adjoint pair to SSet , and the proof it creates a Quillen model structure.

It is unknown how this pattern(?) continues. That economical models of homotopy n-types
will have something to do with nerves of weak n-categories may be only a low-dimensional
illusion. At any rate, the known families of Quillen models for n-types, all n ∈ N, seem
to be based not on simplicial sets but simplicial groups. Note that the model structure on
Simp(Gp) (whose homotopy theory is equivalent to that of reduced simplicial sets, thus that
of connected spaces) is created by the forgetful functor to SSet ; thus Thm. 2.4 does apply.
We cull three examples from the expanding literature on the subject. For the first two (and
the closely related n-hypergroupoids) see Cabello–Garzón [11] and Cabello [10] for the third.

Example 3.12. n-hypercrossed complexes: n− HXC(Gp)
P

�
J

Simp(Gp)

Example 3.13. n-fold simplicial groups: Simpn(Gp)
T
�
W

Simp(Gp)

Example 3.14. simplicial groups, with “truncated weak equivalences”:

Simp(Gp)
skn

�
coskn

Simp(Gp)

Here are two examples where Thm. 2.4 applies coming from equivariant homotopy theory.

Example 3.15. G-equivariant spaces: SSetG
L

�
R

SSet I

This example is taken from Dwyer–Kan [17] (which in fact deals with topological groups).
Let G be a discrete group and I := {Gi} a set of subgroups of G. The ith component of the
right adjoint R is the sub-SSet fixed by Gi; it creates what is sometimes called the “fine”
equivariant homotopy theory of G-simplicial sets. Note that for Thm. 2.4 to apply, R must
be finite limit definable, thus each Gi has to be finite. (There is no such restriction over
Set .)

Remark 3.16. If O is the orbit category corresponding to the data G, {Gi} — i.e. the full
subcategory of G-sets with objects the cosets G/Gi — then the fine model structure on
G-simplicial sets is Quillen-equivalent to simplicial presheaves on O.

Example 3.17. cyclic sets: Pre(Λ) � SSetN

Let Λ be Connes’ cyclic indexing category. A Quillen model structure has been established
on Pre(Λ) by Spaliński [41], generalizing that of Dwyer–Hopkins–Kan [18]. For any positive

integer r, there exists a combinatorial and in fact finite limit definable functor Pre(Λ)
Φr−→

SSet such that the geometric realization of Φr(X) is naturally homeomorphic to the Z/r-
fixed point set of the topological realization of X (which, recall, is an S1-space). For any set
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of positive integers, the Φr collectively create a model structure on Pre(Λ) that is Quillen-
equivalent to the corresponding fine homotopy theory of S1-spaces, where weak equivalences
and fibrations are detected on the Z/rZ-fixed subspaces.

Remark 3.18. No combinatorial model seems to be known for the finest version of S1-
equivariant homotopy theory, where a weak equivalence is a map that restricts to ordinary
weak equivalences on the H-fixed subsets for every closed subgroup H of S1 — that is to
say, S1 itself, in addition to the discrete ones.

For the next example, recall that Grothendieck defined abelian cohomology as the right
derived functor of the global section functor, and it is an easy consequence of his foundational
work on abelian categories that this exists for sheaves of modules over an arbitrary site.
Quillen introduced his homotopy model formalism, in part, to allow for a calculus of non-
abelian derived functors, e.g. from simplicial groups or rings. He asked in [39] whether this
axiomatics is broad enough to apply to sheaves on an arbitrary site. After a 30-year hiatus,
we see the answer is yes; moreover, it follows by an essentially tautologous extension of
Quillen’s original methods.

Example 3.19. simplicial T-algebras: SSetT
F

�
U

SSet

Here T is a finitary single-sorted equational universal algebraic theory, U the forgetful and
F the free functor.

The case E = Set is due to Quillen [39]; to apply Cor. 2.4, one only needs the observation
that a finitary equational algebraic theory is the same as a structure definable in terms of
finite products (see e.g. Barr–Wells [2]) and of course the forgetful functor is definable, too.

Remark 3.20. For the case of simplicial rings and modules, this raises the possibility of a
“purely homotopical” construction of the cotangent complex of a morphism of ringed topoi,
even in the absence of enough points, when the problem was solved by Illusie [30].

Remark 3.21. Abelian groups, in particular, are a species of universal algebras, and Ex. 3.19
specializes to give a homotopy model structure on Ab(E)∆

op
, simplicial abelian sheaves,

whose fibrations are the fibrations of the underlying simplicial sheaves. (A fibration of
simplicial sheaves means here a “strong fibration”, that is, a fibration in Joyal’s model
structure on simplicial sheaves.) Not every mono in Ab(E)∆

op
is a cofibration. Via the

Dold-Kan equivalence, this gives a model structure on ChN(Ab(E)), i.e. N-indexed chain
complexes, where the weak equivalences are the quasi-isomorphisms, but more maps are
fibrations than just the injective ones. See Hovey [28] for related results.

As a last example of “creation by right adjoints”, let M be a Quillen model category,
D a diagram, and Dδ the diagram D “made discrete”, i.e. consisting of D’s objects and

identity arrows. The inclusion Dδ
i−→ D induces an adjunction MD

L

�
i∗
MDδ that creates

a model structure on MD under set-theoretic hypotheses on M (cofibrant generation; see
Hirschhorn [27]). IfM was a coherently definable homotopy theory, this endowsMD with
a sheafifiable model structure. (One can apply Prop. 2.3 directly.)
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Remark 3.22. Let M be a Quillen model category, D a diagram. Let us agree that weak
equivalences inMD are to be the natural transformations that are D-objectwise weak equiv-
alences. The existence of a Quillen model structure on MD extending this seems to be a
rather muddy affair. It is known to hold, unconditionally inM, for combinatorially distin-
guished D: for example, those satisfying the Reedy property — see e.g. Hovey [29] — or
having a simplicially finite nerve — see Dwyer–Spaliński [14], Franke [19]. As pointed out
above, it also holds, unconditionally in D, for set-theoretically distinguished M. If both
D andM are distinguished, the two constructions need not coincide. For yet more special
— for example, sheafifiable — M and arbitrary D, MD will possess two distinct model
structures, in analogy with Heller’s [25] “left” and “right”model structures for simplicial di-
agrams. The cosimplicial spaces of Bousfield–Kan [9], i.e. cosimplicial simplicial sets, possess
(at least) three distinct cofibration classes for the same choice of weak equivalences, and they
all survive to diagrams of cosimplicial spaces. [3] attempts to put some order in this zoo;
it is proven that for a wide class of model categories (see therein for the precise condition)
all possible small-generated cofibrations classes yield Quillen-equivalent homotopy theories.
Note that the theory of homotopy limits and colimits — which is the chief reason to study
MD — can be developed bypassing the question of existence of a full model structure on
MD; see Dwyer–Hirschhorn–Kan [15] and Chachólski–Scherer [12] for two approaches.

There are variants on Thm. 2.4 that will not be packed into a meta-theorem here. For
example, it is not necessary that the class of cofibrations C(E) to be lifted is coherently
definable; it suffices if it is of the form cof(I), with I a coherently definable class. This
allows one to sheafify Hinich’s [26] model structures on dg operads, algebras and modules.
Also, given one cofibrantly generated model structure on a locally presentable category, Jeff
Smith’s theorem (quoted as 4.1 below) allows for an easy argument to pass to a smaller
(though still set-generated) class of cofibrations. In essence, it suffices if the proposed class
of cofibrations works in Set , and is dominated by one to which 2.4 applies. This helps in
comparing work of Joyal–Tierney [33] on simplicial groupoids with that of Crans [13], both
written already in the setting of sheaves.

4. Localization along a Quillen left adjoint

Let us sum up the main properties of the Quillen model categories encountered in the two
parts of this paper.

• The underlying category of models is S(E), the category of S-structures in a topos E,
where S is finite limit definable.
• The subcategory WE of weak equivalences can be specified by a set of coherent axioms
in the language of morphisms of S-structures.
• The class of cofibrations CE is functorial in E, and preserved by inverse images of
geometric morphisms. It is small-generated, i.e. CE = cof(IE) for a set IE depending
(non-canonically) on E.
• For any Grothendieck topos E, the data provide a cofibrantly generated Quillen model
category. (Fixing only S and W, there may exist several suitable cofibration classes.)
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Goerss and Jardine [21], working with E∗-local simplicial objects, where E∗ is a homology

theory, proved that given a geometric morphism E
f−→ F, one can take as weak equivalences

in F∆op
the maps that f ∗ takes into weak equivalences in E∆op

. (Cofibrations in F∆op
stay

the same, i.e. are all monomorphisms.) The Quillen model structure thus obtained on F∆op

extends the class of weak equivalences, so is a “localization” of the original. We will see
that this phenomenon extends to any sheafifiable homotopy theory. Earlier, Jardine [31] ob-

served that when E∆op f−→ F∆op
is the inclusion of simplicial sheaves on a site into simplicial

presheaves, the model structure induced on simplicial presheaves via sheafification is Quillen
equivalent to the (canonical) one on simplicial sheaves. This holds for any sheafifiable ho-
motopy theory as well. Neither fact is specific to sheaves; they follow from a very robust
statement about Quillen model categories whose underlying category is locally presentable.
Recall the following version of J. Smith’s theorem (cf. Thm. 1.7, Prop. 1.15 and Prop. 1.19
of part I):

Theorem 4.1. Let C be a locally presentable category, W a full accessible subcategory of
Mor(C), and I a set of morphisms of C. Suppose they satisfy:

(0) W has the 2-of-3 property (Quillen’s axiom M2).
(1) inj(I) ⊆ W.
(2) The class cof(I) ∩W is closed under transfinite composition and under pushout.

Then setting weak equivalences:=W, cofibrations:=cof(I) and fibrations:=inj(cof(I)∩W), one
obtains a cofibrantly generated Quillen model structure on C.
Proposition 4.2. Let C1, W1, I1 and C2, W2, I2 be data satisfying the hypotheses of

Thm. 4.1, and C1
L

�
R
C2 a Quillen adjunction. Assume in addition that L takes weak equiva-

lences in C2 into weak equivalences in C1. There exists a Quillen model structure on C2 with
cofibrations cof(I2) and weak equivalences WL := {g ∈ C2 | L(g) ∈ W1}.

Proof. WL is an accessible class of maps, since it is the inverse image of an accessible category
by an accessible functor. W2 ⊆ WL by assumption. L preserves cofibrations and colimits,
and with these the criteria of Thm. 4.1 are verified.

Corollary 4.3. Let S(−), W(−), C(−) be a sheafifiable homotopy model theory, E
f−→ F a

geometric morphism. There exists a Quillen model structure on S(F) with cofibrations CF

and weak equivalences Wf∗ := {g ∈ S(F) | f ∗(g) ∈ WE}.
Proposition 4.4. Suppose that, in the situation of 4.2, C1 is actually a full reflexive sub-
category of C2 via L ⊣ R. Then this adjunction provides a Quillen equivalence between C1
(with cofibrations cof(I1) and weak equivalences W1) and C2 with cofibrations cof(I2) and
weak equivalences WL.

Proof. L preserves cofibrations by assumption, and takes WL into W1 by definition; so L ⊣ R
is a Quillen pair. To prove it a Quillen equivalence, it is enough to show that the reflector
natural transformations X → RL(X) are weak equivalences in C2. But they are sent into
isomorphisms by L, so that certainly holds.
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Corollary 4.5. With S(−), W(−), C(−) as in 4.4, let j be a Lawvere–Tierney topology on a
topos F and let f be the canonical topos inclusion Shj(F) ↪→ F. f ∗ ⊣ f∗ induces a Quillen
equivalence between S(Shj(F)) (with cofibrations CShj(F) and weak equivalences WShj(F)) and
S(F) with cofibrations CF and weak equivalences Wf∗.
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Différentielle Catégoriques, 38(1):67–92, 1997.
[11] Julia G. Cabello and Antonio R. Garzón. Closed model structures for algebraic models of n-types.

Journal of Pure and Applied Algebra, 103(3):287–302, 1995.
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[14] W. G. Dwyer and J. Spaliński. Homotopy theories and model categories. In Handbook of algebraic

topology, pages 73–126. North-Holland, 1995.
[15] William G. Dwyer, Philip S. Hirschhorn, and Daniel M. Kan. Model categories and more general abstract

homotopy theory. See http://www-math.mit.edu/˜psh.
[16] William G. Dwyer and Daniel M. Kan. Homotopy theory and simplicial groupoids. Indagationes Math-

ematicae (Nederl. Akad. Wetensch. Proc. Ser. A), 46(4):379–385, 1984.
[17] William G. Dwyer and Daniel M. Kan. Singular functors and realization functors. Indagationes Math-

ematicae (Nederl. Akad. Wetensch. Proc. Ser. A), 46(2):147–153, 1984.
[18] Willian G. Dwyer, Michael J. Hopkins, and Daniel M. Kan. The homotopy theory of cyclic sets. Trans-

actions of the American Mathematical Society, 291(1):281–289, 1985.
[19] Jens Franke. Uniqueness theorems for certain triangulated categories with an Adams spectral sequence.

See http://www.math.uiuc.edu/K-theory/.
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[33] André Joyal and Myles Tierney. On the homotopy theory of sheaves of simplicial groupoids. Mathemat-

ical Proceedings of the Cambridge Philosophical Society, 120(2):263–290, 1996.
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