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ABSTRACT. The best-known version of Shelah’s celebrated singular cardinal compactness theorem
states that if the cardinality of an abelian group is singular, and all its subgroups of lesser cardinality
are free, then the group itself is free. The proof can be adapted to cover a number of analogous
situations in the setting of non-abelian groups, modules, graph colorings, set transversals etc. We
give a single, structural statement of singular compactness that covers all examples in the literature
that we are aware of. A case of this formulation, singular compactness for cellular structures, is of
special interest; it expresses a relative notion of freeness. The proof of our functorial formulation
is motivated by a paper of Hodges, based on a talk of Shelah. The cellular formulation is new, and
related to recent work in abstract homotopy theory.

INTRODUCTION

The form of Shelah’s celebrated Singular Compactness Theorem that is the oldest historically
and prototypical in its formulation is the following: if µ is a singular cardinal and A is an abelian
group of size µ all of whose subgroups of cardinality less than µ are free, then A itself is free.
In his breakthrough work [17], however, Shelah already proved variants of singular compactness
for algebras other than abelian groups, as well as for certain graph colorings and set transversals,
to which Hodges [8] and Eklof and Mekler [5] added numerous other examples. These examples
are unified, roughly speaking, by the fact that the proof works for them. Both Shelah [17] and
Hodges [8] (which is also based on Shelah’s ideas) contain axiomatizations for the proofs to carry
through. The intrinsic meaning of singular compactness remains slightly mysterious. The best
formulation that seems to be available is the informal “if µ is a singular cardinal and S a structure
all of whose substructures of cardinality less than µ are free, then S itself is free.” Cf. the title of
Hodges [8] and the first sentence of Eklof [4].

The goal of this article, essentially, is to make the above sentence precise: to formulate singular
compactness by specifying how structure and free should be understood in this context. The
obvious guess, that structure should mean ‘first-order definable structure,’ turns out to be too broad;
and the guess that free should mean ‘free algebra on a set,’ turns out to be too restrictive.

Our starting point is the straightforward translation of the prototypical case of singular compact-
ness into the setting of category theory. Consider the free abelian group functor F : Set → Ab.
An abelian group is free if and only if it is isomorphic to an object in the image of this functor. Our
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desired form of the singular compactness theorem is: for suitable functors F : A→ B, if the size
of an object X of B is singular, and every subobject of X of lesser size is in the image of F , then
X itself is in the image of F . (For the sake of brevity, we will write ‘is in the image of the functor’
to mean ‘is isomorphic to an object in the image of the functor’.)

A category is accessible if it is equivalent to the category of models and homomorphisms of a
set of sentences of the form φ → ψ, where φ and ψ belong to the positive-existential fragment
of the logic Lκ,κ for some κ. This class of categories was identified by Makkai and Paré [11]
as having the right mix of properties to develop a categorical model theory of infinitary logics.
There exist language-independent characterizations of accessible categories, using only concepts
of category theory. One needs to assume that A is an accessible category with directed colimits, B
is a finitely accessible category (this is a sub-class of accessible categories with directed colimits,
corresponding, roughly, to κ = ω in the above definition) and the functor F preserves directed
colimits. These assumptions allow one to introduce a notion of size of objects that is determined
purely by the ambient category; see Def. 1.4. The assumptions on directed colimits are indispens-
able for creating transfinite chains of subobjects. The final assumption is that F -structures extend
along morphisms. This is a simple diagrammatic condition; see Def. 1.1. Thinking of F as a ‘free’
functor and A as a category of ‘bases’ whose morphisms are ‘extensions of bases’, the condition
expresses the matroid-like property that any partial basis (i.e. independent set) can be extended to
a basis.

Singular compactness theorem (functorial form): Let A be an accessible category with filtered
colimits, B a finitely accessible category and F : A → B a functor preserving filtered colimits.
Assume that F -structures extend along morphisms. Let X ∈ B be an object whose size µ is a
singular cardinal. If all subobjects of X of size less than µ are in the image of F , then X itself is
in the image of F .

The formulation given in the paper, Theorem 1.6, is slightly more general in that it only assumes
that ‘enough’ subobjects of X lie in the image of F . The actual criterion, using dense filters of
subobjects, was inspired by the treatment of singular compactness in Eklof-Mekler [5].

Returning to the paradigmatic example of singular compactness, there is another way to think
of free abelian groups or more generally, free algebras. Define a class Fα of algebras, α ranging
over the ordinals, and compatible morphisms Fβ → Fα for β ≺ α, by transfinite induction. Let
F∅ be F (∅), the free algebra on an empty set, and let F• be the free algebra on a singleton. For
successor α + 1, let Fα+1 be the pushout

F∅ //

��

Fα

��

F• // Fα+1

For limit α, let Fα be colim β≺α Fβ . Then an algebra is free if and only if it is isomorphic to Fα for
some α.

The above diagram is really a coproduct, since F∅ is the initial object of Alg. Working in
an arbitrary cocomplete category and allowing an arbitrary member of a fixed collection I of
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morphisms to be pushed on at successor ordinals, the process being continuous at limit ordinals,
one obtains the important class of I-cellular morphisms. An object X is then called I-cellular if
the (unique) map from the initial object to X is I-cellular.

These concepts were introduced originally in topology, in the study of cellular spaces, where the
inclusion ∂Dn ↪→ Dn of the boundary spheres of the unit ball in Rn (for any n ∈ N) played the role
that the morphism F∅ → F• did in the above example. Classical algebraic topology is concerned
with cell complexes built up in finitely many steps, but subsequent work extended this study into
the transfinite. See [12] or the monographs of Hirschhorn [7] or Hovey [9] for background on
cellular morphisms in an axiomatic setting and their relation to homotopy theory, and Def. 5.1 for
detailed definitions.

Singular compactness theorem (cellular form): Let B be a locally finitely presentable category
and I a set of morphisms. Let X ∈ B be an object whose size µ is a singular cardinal. If all
subobjects of X of size less than µ are I-cellular, then so is X .

Perhaps this is the most elegant version of singular compactness. It can be thought of as formu-
lating a relative version of freeness; ‘free structures’ correspond to ‘free cell complexes,’ that is,
coproducts of cells. The cellular form, Theorem 5.9, covers all but a couple of classical examples
of singular compactness that we are aware of. It can be understood, for example, as a non-additive
version of Eklof’s formulation [4] where the fat small object argument from [12] replaces the Hill
lemma. We discovered this form while analyzing Shelah’s notion of µ-colorable graph : a graph
whose vertices can be well-ordered so that no vertex is connected to more than µ of its predecessors
in the well-ordering. This well-ordering is just a trace of a cellular presentation; see Example 4.12.

Cellular singular compactness is a corollary of functorial singular compactness. Just as an
abelian group has many bases, a cellular object has many cellular presentations, but one can code
cells, attaching and cellular maps by data that amount to ‘bases’ and ‘extensions of bases,’ allow-
ing one to reduce Theorem. 5.9 to Theorem 1.6. The requisite combinatorial structure was first
identified, in a different setting, by Lurie [10]. The verification of the basis extension property,
condition (iii) of Theorem 1.6, is non-trivial and builds on recent work in [12].

Our proof of functorial singular compactness is motivated by a close reading of Hodges [8],
itself based on a talk of Shelah’s. As with several papers of Hodges, there are ideas in [8], just
beneath the surface, that can be readily phrased in the language of category theory, but the eventual
form of our main result bears no easily discernible relation to the main result of [8]. We discuss
this interaction more fully at the end of section 4.

1. THE MAIN THEOREM

Let A, B be categories and F : A→ B a functor. The following property will play a key role:

Definition 1.1. We say that F -structures extend along morphisms if, given any morphism g :
X → Y and object U of A, together with an isomorphism i : F (U) → F (X) in B, there exists a
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morphism f : U → V and isomorphism j : F (V )→ F (Y ) such that

F (U)
F (f)

//

i
��

F (V )

j

��

F (X)
F (g)

// F (Y )

commutes.

There is an equivalent, and perhaps slightly more suggestive, way of thinking of this property.
Throughout this paper, “image” means “image up to isomorphism”; we will say that an object
X ∈ B is in the image of F if there exists U ∈ A such that F (U) is isomorphic to X , and we
will say that a morphism g : X → Y ∈ B is in the image of F if there exist f : U → V and
isomorphisms i, j such that the diagram

F (U)
F (f)

//

i
��

F (V )

j
��

X
g

// Y

commutes.

Then F -structures extend along morphisms if and only if for every g : X → Y in the image
of F and isomorphism i : F (U) → X , there exist f : U → V and isomorphism j : F (V ) → Y
making the above diagram commute. Thinking of an isomorphism F (U)→ X as an ‘F -structure
on X’, this condition states that if a morphism g of B underlies a morphism of F -structures, then
any ‘reparametrization’ of the F -structure of the domain can be extended to a reparametrization of
the F -structure of g.

Example 1.2. Let V be a vector space and A the set of linearly independent subsets of V . Order
A by inclusion, turning it into a poset (hence category). Let B be the set of linear subspaces of V ,
again ordered by inclusion. Let the functor (i.e. monotone map) F : A → B send a set of vectors
to its linear span. Then F -structures extend along morphisms.

For any object X of a category C, let Sub(X) denote the full subcategory of C/X whose objects
are monomorphisms. As usual, we will often denote an element U → X of Sub(X) as U ; this will
cause no confusion. For U, V ∈ Sub(X), we will say that U contains V and write V � U if there
is a morphism (necessarily mono and unique) V → U in Sub(X).

Let B be an accessible category with filtered colimits, X an object of B and κ a regular cardinal.

Definition 1.3. A κ-filter of Sub(X) is a full subcategory F ⊆ Sub(X) consisting of κ-presentable
objects such that for every directed system D → F with card(D) < κ, the colimit of D exists and
belongs to F.

A κ-filter F is said to be dense in Sub(X) if for every κ-presentable S ∈ Sub(X) there exists
U ∈ F with S � U .



CELLULAR OBJECTS AND SHELAH’S SINGULAR COMPACTNESS THEOREM 5

Let now F : A → B be a functor. We say that the image of F contains a κ-dense filter of
Sub(X) if there exists a κ-dense filter F ⊆ Sub(X) such that every U ∈ F is in the image of F .

In any accessible category C, for an object X one can define

rank(X) = min{κ | X is κ-presentable}
If C is λ-accessible, has all filtered colimits and rank(X) > λ then rank(X) is a successor cardinal.
(See [2] 4.2). Thus we can introduce

Definition 1.4. Let C be an accessible category with filtered colimits and X ∈ C. If rank(X) > λ
where λ is the least cardinal such that C is λ-accessible then denote by ‖X‖ the cardinal predeces-
sor of rank(X).

For example, for X ∈ Set , ‖X‖ = card(X) if X is infinite, and undefined if X is finite. More
generally, if C is the category of models and elementary embeddings, or category of models and
homomorphisms of suitable (multi-sorted) theories in the logic Lκ,λ, then ‖X‖ is the cardinality of
the (disjoint union of the) sets underlying the model, provided it is no smaller than the Löwenheim-
Skolem number of the theory. ‖X‖ depends, however, only on the ambient category C, and not on
the way it is axiomatized. See [2], 2.3 for further discussion. We will use this concept rather than
presentability when the ‘exact size’ of the object needs to be captured.

Definition 1.5. Let F : A → B be a functor preserving filtered colimits between accessible
categories with filtered colimits. The rank of accessibility of F is the least cardinal µF such that A
and B are µF -accessible, and for all regular λ > µF , F takes λ-presentable objects to λ-presentable
ones.

It is a basic fact about accessible categories that µF exists; see Prop. 2.1.

For a finitely accessible category B, let fpB denote the full subcategory of B formed by one
representative from each isomorphism class of its finitely presentable objects. For any small cate-
gory C, let card(C) denote the greater of ℵ0 and the cardinality of the set of morphisms of C. For
finitely accessible B, one can think of card(fpB) as the size of a certain, canonically definable,
first-order theory whose category of models is equivalent to B; Prop. 4.4 will make this clear. Now
we can state the main result of this paper.

Theorem 1.6. Let A be an accessible category with filtered colimits, B a finitely accessible cat-
egory and F : A → B a functor preserving filtered colimits. Let X ∈ B be an object with
max{µF , card(fpB)} < ‖X‖. Assume

(i) ‖X‖ is a singular cardinal
(ii) there exists φF,X < ‖X‖ such that for all successor cardinals κ+ with φF,X < κ+ < ‖X‖,

the image of F contains a dense κ+-filter of Sub(X)
(iii) F -structures extend along morphisms.

Then X is in the image of F .
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The next section collects some preliminary facts about accessible categories. This is followed
by a section on two-player games for constructing countable chains of subobjects, a beautiful idea
of Shelah’s that is at the heart of all ‘simple’ proofs of his singular cardinal compactness theorem.

The proof of the main theorem is in two stages. In the first one, the target category B is taken
to be a presheaf category, i.e. the category of functors from some small category to Set . This
will allow us to work with elements, making the proof much more transparent. The second stage
will extend the conclusion to any target category that possesses a functor into a presheaf category
satisfying certain properties. All finitely accessible categories do, as do all categories arising from
Shelah’s Abstract Elementary Classes. See the last part of section 4 for a discussion about the
generality of the main theorem.

Section 5 introduces cellular constructions and well-founded diagrams parametrizing them, and
proves the cellular version of singular compactness as a corollary of the main theorem. We will
pepper the discussion with examples of singular compactness, including all the classical ones as
well as some that are new. Some examples appear more than once, as cases of different construc-
tions. The last section of the paper is devoted to a discussion of open questions.

2. PRELIMINARIES ON ACCESSIBLE CATEGORIES

Accessible functors and ranks of objects. The next observation is related to the Uniformization
Theorem of Makkai and Paré [11], but both the hypotheses and conclusion are stronger.

Proposition 2.1. Let F : A → B be a functor preserving filtered colimits, between accessible
categories with filtered colimits. Let λ1 be the least rank of accessibility of A and λ2, the least
rank of accessibility of B. Set

λ3 = sup
{
rank(F (X)) | X ∈ A is λ1-presentable

}
.

Set µF = max{λ1, λ2, λ3}. Then µF is the rank of accessibility of F in the sense of Def. 1.5.

Proof. If µ is such that A and B are µ-accessible, and for all regular λ > µ, F takes λ-presentable
objects to λ-presentable ones, then clearly µ > max{λ1, λ2, λ3}.

Now if a category is λ-accessible and has filtered colimits, then it is µ-accessible for any µ > λ,
cf. [2], 4.1. Thus A and B are µF -accessible. Let X ∈ A be λ-presentable, λ > µF . If λ = λ1
then λ = µF > λ3 so F (X) is certainly λ-presentable. If λ > λ1 then X can be written as a retract
of an object that is the colimit of a filtered diagram of λ1-presentable objects, along a diagram
of size less than λ. (See the proof of [2], 4.1; X can be written as a λ-filtered colimit of filtered
colimits of λ1-presentable objects along diagrams of size less than λ, thus a retract of the colimit
of one such diagram.) Since F preserves filtered colimits, F (X) is a retract of an object that is the
colimit of a filtered diagram of λ3-presentable objects, along a diagram of size less than λ. Since
λ3 6 µF 6 λ, F (X) is λ-presentable too. �
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Löwenheim-Skolem arguments in presheaf categories. Let C be a small category. The functor
category SetC is locally finitely presentable, a fortiori finitely accessible. For X ∈ SetC , write

u(X) =
∐
c∈C

X(c)

the disjoint union of the sets underlying X .

Proposition 2.2. For X ∈ SetC , let a subset Sc ⊆ X(c) be given for each object c ∈ C. There
exists a subfunctor V � X such that Sc ⊆ V (c) and

(2.1) card
(
u(V )

)
6 max{card(C),ℵ0}+

∑
c∈C

card(Sc)

Proof. Let S(0)
c = Sc and having defined S(n)

c , set

S(n+1)
c =

{
y ∈ X(c) | y = f(x) for some x ∈ S(n)

c′ and morphism f : c′ → c ∈ C
}

Note that S(n)
c ⊆ S

(n+1)
c ⊆ X(c). Let V (c) = colim n∈N S

(n)
c and note that for all morphisms

f : c′ → c ∈ C and x ∈ V (c′), f(x) ∈ V (c). Thus V is a subfunctor of X and the inequality (2.1)
holds. �

Since an object of SetC is finitely presentable if and only if it is a retract of a finite colimit of
representables,

max{card(C),ℵ0} = card(fp SetC) .

By [2] Remark 2.3, it follows that for any X ∈ SetC with card(fp SetC) < card(u(X)), one has
card(u(X)) = ‖X‖.

Corollary 2.3. For X ∈ SetC , let a subset Sc ⊆ X(c) be given for each object c ∈ C. Suppose

card(fp SetC) <
∑
c∈C

card(Sc)

Then there exists V � X such that Sc ⊆ V (c) for all c ∈ C and∑
c∈C

card(Sc) = ‖V ‖ .

Lifting smooth chains. Let κ be an ordinal, thought of as an ordered set, hence category. A
smooth chain of shape κ in a category C is a functor D : κ → C such that for all limit ordinals
β < κ, D(β) is a colimit cocone on D restricted to {α | α < β}. The next lemma will play a key
role in the proof of the main theorem.

Lemma 2.4. Let A and B be accessible categories with filtered colimits and F : A→ B a functor
preserving filtered colimits. Let B : κ → B be a smooth chain with colimit X . Suppose that for
all α < κ, the morphism B(α) → B(α + 1) is in the image of F and F -structures extend along
morphisms. Then X is in the image of F .
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Proof. We will define a smooth chain A : κ→ A such that FA is isomorphic to B. Use induction
on α < κ. SelectA(0)→ A(1) ∈ A so its F -image is isomorphic toB(0)→ B(1) via i0 : A(0)→
B(0) and i1 : A(1) → B(1). Given that the diagrams FA(β) and B(β), β < α, are isomorphic:
for successor α, since F -structures extend along morphisms, one can selectA(α−1)→ A(α) so its
image is isomorphic toB(α−1)→ B(α) via iα−1 : A(α−1)→ B(α−1) and iα : A(α)→ B(α).
At limit α, define A(α) = colim β<αA(α) and iα to be the isomorphism A(α) → B(α) induced
by the fact that F preserves filtered colimits. Finally, again since F preserves filtered colimits,
F
(

colim α<κA(α)
)

is isomorphic to colim α<κ FA(α), hence to X . �

Fixed points in filtered diagrams. The next few lemmas state that if an object is written as κ-
filtered colimit of κ-presentable objects in two different ways, and stages of the diagram satisfy
a certain continuity property, then stages of the colimit are isomorphic cofinally often. The proof
is a simple back-and-forth argument that can be thought of as a non-additive version of Eklof’s
lemma [5] Ch.4 Lemma 1.4.

Lemma 2.5. Let A be a λ-accessible category with filtered colimits, U ∈ A and λ 6 κ with κ
uncountable and regular. Then there exist a diagram D and functor K : D → A such that

(1) D is a small, κ-filtered category that has countable filtered colimits (equivalently, colimits
of countable chains)

(2) K(d) is κ-presentable for all d ∈ D
(3) K preserves countable filtered colimits
(4) the colimit of K is isomorphic to U .

Proof. Since A is λ-accessible with filtered colimits and λ 6 κ, A is κ-accessible ([2], 4.1). The
canonical diagram of U with respect to presκ(A), the (essentially small) category of κ-presentable
objects of A, has the requisite properties. �

Lemma 2.6. Let κ, A and U be as above, and let Ki : Di → A, i = 1, 2, be functors satisfying
the four conditions of Lemma 2.5. Let si ∈ Di, i = 1, 2, be arbitrary. Then there exist ti ∈ Di,
with morphisms si → ti ∈ Di, such that the colimit inclusions K1(t1) → U and K2(t2) → U are
isomorphic as objects of A/U .

Proof. We will define chains of objects s(0)i → s
(1)
i → . . . → s

(n)
i → . . . , n ∈ N, in Di, such that

s
(0)
i = si, for i = 1, 2 respectively, together with a commutative diagram

K1(s
(0)
1 ) //

��

K1(s
(1)
1 ) //

��

. . . . . . // K1(s
(n)
1 ) //

��

K1(s
(n+1)
1 )

��

// . . .

K2(s
(0)
2 ) //

99

K2(s
(1)
2 ) //

<<

. . . . . . //

<<

K2(s
(n)
2 ) //

88

K2(s
(n+1)
2 ) // . . .

in A between their images under Ki. Let u(n)i : Ki(s
(n)
i ) → U denote the colimit structure map;

the diagram will also have the property that the compositeK1(s
(n)
1 )→ K2(s

(n)
2 )

u
(n)
2−→ U equals u(n)1

and K2(s
(n)
2 )→ K1(s

(n+1)
1 )

u
(n+1)
1−−−→ U equals u(n)2 for all n ∈ N. Set ti = colim n∈N s

(n)
i . Note that
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Ki(ti) is isomorphic to colim n∈NK(s
(n)
i ) and the induced morphism Ki(ti)→ U is isomorphic to

the colimit of the u(n)i , since Ki preserves filtered colimits. The morphisms K1(t1)→ K2(t2) and
K2(t2)→ K1(t1) induced by the zig-zags are inverse isomorphisms in A/U . A morphism si → ti
exists as the colimit structure map s(0)i → ti, verifying all parts of the claim.

To construct the diagram, having defined s(n)1 , the map u1(s
(n)
1 ) factors through K2 : D2 → A

since K1(s
(n)
1 ) is κ-presentable and D2 is κ-filtered. Without loss of generality, there exists d(n)2 ∈

D2 with a morphism s
(n−1)
2 → d

(n)
2 (when n > 0) and map K1(s

(n)
1 ) → K2(d

(n)
2 ) such that the

composite K1(s
(n)
1 )→ K2(d

(n)
2 )→ U equals u1(s

(n)
1 ).

Using the induction hypothesis that K2(s
(n−1)
2 ) → K1(s

(n)
1 )

u
(n)
1−−→ U equals u(n−1)2 , the maps

K2(s
(n−1)
2 ) → K2(d

(n)
2 ) and K2(s

(n−1)
2 ) → K1(s

(n)
1 ) → K2(d

(n)
2 ) become equal after composing

with K2(d
(n)
2 )→ U . Since K2(s

(n−1)
2 ) is κ-presentable and D2 is κ-filtered, there exists s(n)2 ∈ D2

with a morphism d
(n−1)
2 → s

(n)
2 such that the composites K2(s

(n−1)
2 )→ K2(d

(n)
2 )→ K2(s

(n)
2 ) and

K2(s
(n−1)
2 )→ K1(s

(n)
1 )→ K2(d

(n)
2 )→ K2(s

(n)
2 ) are equal, as required.

Given s(n)2 , there is a symmetric argument for the construction of s(n+1)
1 . �

We will mainly use the following

Corollary 2.7. Let F : A → B be a functor preserving filtered colimits between accessible cate-
gories with filtered colimits, with µF as its rank of accessibility, and µF 6 κ with κ uncountable
and regular. Let K1 : D1 → A and K2 : D2 → B be functors satisfying conditions (1)-(2)-(3) of
Lemma 2.5, with colim D1 K1 = U and colim D2 K2 = V , where F (U) is isomorphic to V . Let
si ∈ Di, i = 1, 2, be arbitrary. Then there exist ti ∈ Di, with morphisms si → ti ∈ Di, such
that the image under F of the colimit inclusion K1(t1) → U is isomorphic in B/V to the colimit
inclusion K2(t2)→ V .

Proof. Apply Lemma 2.6 to the composite FK1 : D1 → B and K2 : D2 → B. �

3. SUBOBJECT GAMES

Let F : A → B be a functor with B accessible, X any object of B. The next definition is
motivated by the concept of ‘strongly almost free module’; see [4] 3.2.

For a regular cardinal κ, let presκ[X] denote the full subcategory of Sub(X) whose objects are
κ-presentable. Write presκ[X] ∩ F for the collection of objects{

U ∈ Sub(X) | U is κ-presentable and in the image of F
}

By abuse of notation, we will write presκ[X] ∩ F as well for the collection of morphisms in
presκ[X] that are in the image of F . The context will always make it clear what is meant.

Definition 3.1. A subsetW of presκ[X]∩F cannot be blocked if for all U ∈ W and V ∈ presκ[X]
there exists W ∈ W such that W contains both U and V and U � W ∈ presκ[X] ∩ F .
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We wish to prove that under the conditions of the main theorem, presκ[X] contains a non-empty
set of objects that cannot be blocked. The proof is indirect and based on Shelah’s ‘subobject game,’
as exposed in [8]; see also [4].

The subobject game. Consider the non-cooperative game of Player A and Player B with rules
as follows. Player A moves first and chooses an object A0 ∈ presκ[X] ∩ F . Player B moves
second and selects an object B1 ∈ presκ[X] at will. Thereafter, for each n ∈ N+ in turn, Player
A needs to select an object An ∈ presκ[X] ∩ F that contains both Bn and An−1 and so that
An−1 � An ∈ presκ[X] ∩ F . In response, Player B can select any object Bn+1 ∈ presκ[X] as
he desires. Player A loses if she cannot make a valid selection at some n and wins if, against all
possible choices by Player B, the game can continue through all n ∈ N+.

A game-state before move n+ 1 by Player B is thus a chain of objects in presκ[X]

A0� B1� A1� B2� · · ·� An−1� Bn� An

such that the inclusions Ai� Ai+1 lie in presκ[X] ∩ F for each 0 6 i 6 n− 1.

Note that the game is memoryless, i.e. the possibilities for Player A’s next move are restricted
solely by her previous move and Player B’s previous move, while the moves of Player B are never
restricted at all; and the reason for Player A’s losing the game after move n + 1 is solely her
inability to find a suitable An+1, given An and Bn, regardless of the prior stages of the game. More
precisely, let

g = A0� B1� A1� B2� · · ·� An−1� Bn� An
and

g′ = A′0� B′1� A′1� B′2� · · ·� A′m−1� B′m� A′m
be two game-states, with An isomorphic to A′m. Then any valid continuation of g, suitably rein-
dexed, is a valid continuation of g′. Thus the following property is well-defined:

Definition 3.2. A ∈ presκ[X] ∩ F is a winning object for Player A if she can win from any and
all game-states whose last object is A. Otherwise, Player B can win from any and all game-states
whose last object is A, and A is said to be a losing object for Player A.

The next observation is tautologous:

Proposition 3.3. LetWκ be the set of winning objects for Player A. ThenWκ cannot be blocked
in presκ[X].

Indeed, given U ∈ Wκ and V ∈ presκ[X], consider the set S of objects W ∈ presκ[X] such
that W contains both U and V and U � W ∈ presκ[X] ∩ F . If S were empty, or only contained
W that are losing objects for Player A, then U itself would be a losing object for Player A (with
V as winning response by Player B). Thus S must contain some winning object W for Player A,
verifying that the set of winning objects cannot be blocked.

So the onus is to proveWκ non-empty. With slight modifications, the proof below would work
for any finitely accessible target category B, and in fact for any category possessing an ‘underlying
set’ functor satisfying certain properties, but for the sake of convenience, we prefer to work with
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presheaf categories at this point. In particular, we will freely use that Sub(X) is a complete
distributive lattice for any object X of a presheaf category. The conclusion of the main theorem
will be extended to all finitely accessible categories B at the end of the next section.

Proposition 3.4. Let A be a λ-accessible category with filtered colimits, B a functor category
SetC where C is small and F : A → B a functor preserving filtered colimits. Let X ∈ B be an
object and κ a regular cardinal with max{λ, card(C)} < κ. Assume that the image of F contains
a dense κ+-filter F of Sub(X). ThenWκ is non-empty.

Excepting the case when the object X itself is assumed to belong to the image of F (which,
at least when ‖X‖ is singular, is the desired conclusion of the singular compactness theorem!) it
seems hard to give an explicit example of a winning object for Player A. Prop. 3.4 is proved by
contradiction.

Assume that Wκ is empty, that is, Player A has no winning objects. The initial move A0 of
Player A could be an arbitrary object in presκ[X]∩F , and Player B must have a winning response
to it. Note that all subsequent moves of Player A must lie in presκ[X] ∩ F and since the game
is memoryless, a winning response by Player B to A0 is also a winning response to the object A0

being played by Player A at any subsequent state of the game. Hence, without loss of generality, a
winning strategy for Player B can be taken to be a map s from presκ[X] ∩ F to presκ[X] with the
property: there exists no sequence of moves An, n ∈ N, by Player A such that

A0� s(A0)� A1� s(A1)� · · ·� An� s(An)� · · ·
is a valid game.

To proceed, we need a surjection κ
〈f,g〉−−→ κ×κ such that f(α) 6 α for all α < κ. Let us quickly

recall how to construct one. Let u : κ → κ be a map such that card
(
u−1(α)

)
= κ for all α < κ.

(That is, u is the first coordinate of a bijection from κ to κ× κ.) Write [α, κ) for the set of ordinals
β with α 6 β < κ. Since κ is a cardinal, card

(
u−1(α)∩ [α, κ)

)
= κ for all α < κ. Fix a bijection

wα from u−1(α) ∩ [α, κ) to κ. Now set

f(α) =

{
∅ if u(α) > α

u(α) if u(α) 6 α

g(α) =

{
∅ if u(α) > α

wu(α)(α) if u(α) 6 α .

(As an aside, a much more elegant, though combinatorially more involved, example of such 〈f, g〉
is the restriction to the cardinal κ of Gödel’s pairing function for the ordinals. Then κ

〈f,g〉−−→ κ× κ
will be a bijection such that f(α) 6 α for all α < κ. See Shoenfield [19] 9.3.)

We will now define two smooth chains, C(α) ∈ presκ[X] and Y (α) ∈ F of subobjects (to
be thought of as subpresheaves) of X , for α < κ, by simultaneous induction. Once Y (α) has
been defined, we also fix a surjection e(α,−) : κ → u(Y (α)). Here u(Y ) =

∐
c∈C Y (c) for any

Y ∈ SetC as in Section 2. Note that card
(
u(Y (α))

)
6 κ since the objects in F are κ+-presentable

and card(C) < κ.
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Let C(0) ∈ presκ[X] be arbitrary and choose Y (0) ∈ F with C(0) � Y (0). Thereafter, for
successor α + 1, let C(α + 1) be an object of presκ[X] such that

• C(α)� C(α + 1)
• s(C(α))� C(α + 1), provided C(α) is in the image of F
• u(C(α + 1)) contains the element e(f(α), g(α)) of Y (f(α)), cf. Cor 2.3.

Use then the density of F to find Y (α + 1) such that C(α + 1) � Y (α + 1). For limit α, set
C(α) = colim β<αC(β) and Y (α) = colim β<α Y (β). Since F is a κ+-filter, Y (α) ∈ F again.

Obviously colim α<κC(α) ⊆ colim α<κ Y (α). On the other end, every element of
u
(

colim α<κ Y (α)
)

will have been included in C(α) for some α < κ. So we can introduce

V = colim α<κC(α) = colim α<κ Y (α)

Since F is a κ+-filter contained in the image of F , V is isomorphic to F (U) for some U ∈ A.
Write U as colim D1 K1 for some functor K1 : D1 → A satisfying properties (1) through (4) of
Lemma 2.5. Cor. 2.7 will then apply with D2 the ordinal (hence poset) κ and K2 the functor
sending α < κ to C(α).

We can now define a sequence of moves by Player A to defeat strategy s. We will define a
countable chain d−1 → d0 → d1 → · · · → dn → · · · of objects and morphisms in D1, and a
countable increasing chain α−1 < α0 < · · · < αn < · · · of ordinals less than κ, by induction. Set
d−1 to be an arbitrary object of D1 and α−1 = 0. Having defined dn−1 and αn−1, apply Cor. 2.7 to
K1 : D1 → A and K2 : κ → B with s1 = dn−1 and s2 = αn−1 + 1. Set dn = t1 and αn = t2 as
concluded by the lemma.

Now let An be C(αn) for n ∈ N. For all n ∈ N, An+1 contains s(An) since C(αn + 1) contains
s(C(αn)) and αn + 1 6 αn+1. Finally, since FK1(dn) and K2(αn) = C(αn) = An are isomorphic
as subobjects of V , the image of K1(dn) → K1(dn+1) ∈ A by F is isomorphic to the inclusion
An � An+1. Thence Player A’s moves An, n ∈ N, defeat the strategy s of Player B. This
completes the proof of Prop. 3.4. �

Note that the play by A that defeats s is a chain A0 � A1 � A2 � · · · of subobjects that
is the image under F of a composable chain of morphisms in A, namely, K1(d0) → K1(d1) →
K1(d2) → · · · (itself the image under K1 of a composable chain of morphisms in D1.) The
rules of the game require something less, namely, that each successive inclusion An � An+1 lie
in the image of F (adjacent inclusions not necessarily arising as images of morphisms that are
composable in A). This makes the game easier for A and harder for B. Indeed, this is the reason
that Player B’s putative winning strategy needs to depend on the last move by Player A just as an
element of Sub(X), regardless of which object of A it is the F -image of. This makes it harder
to use the subobject game to build an ω-long chain of subobjects of X arising as the image under
F of an ω-long composable chain of morphisms of A. The assumption that F -structures extend
along morphisms comes to the rescue, as we will see in the next section.
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4. THE BIG PICTURE

We return to the hypotheses of Theorem 1.6 with the additional assumption that B is a functor
category SetC with C small. We will construct a commutative diagram in Sub(X):

. . . . . . . . . . . . . . . . . . . . . . . . . . .

B0,3

OO

// B1,3

OO

// . . . // Bα,3

OO

// Bα+1,3

OO

// . . . Bβ,3

OO

// . . .

M0,3

cc

OO

// A1,3

OO

cc

Aα,3

OO

Mα,3

cc

//

OO

Aα+1,3

OO

cc

. . . Mβ,3

cc

B0,2

OO

// B1,2

OO

// . . . // Bα,2

OO

// Bα+1,2

OO

// . . . Bβ,2

OO

// . . .

M0,2

cc

OO

// A1,2

OO

``

Aα,2

OO

Mα,2

cc

//

OO

Aα+1,2

OO

``

. . . Mβ,2

cc

B0,1

OO

// B1,1

OO

// . . . // Bα,1

OO

// Bα+1,1

OO

// . . . Bβ,1

OO

// . . .

M0,1

cc

OO

// A1,1

OO

``

Aα,1

OO

Mα,1

cc

//

OO

Aα+1,1

OO

``

. . . Mβ,1

cc

B0,0

OO

// B1,0

OO

// . . . // Bα,0

OO

// Bα+1,0

OO

// . . . Bβ,0

OO

// . . .

The objects Bα,n are indexed by the ordinals α < cf ‖X‖, n < ω and form a poset of order type
cf ‖X‖ × ω. Successor columns α + 1 are preceded by a column of intermediate objects Mα,n,
mapping to Bα,n of the predecessor column and also to objects Aα+1,n that alternate with the
Bα+1,n. Limit columns β only contain objects Bβ,n. Ordinary arrows indicate inclusions between
subobjects of X; multiply broken arrows indicate inclusions lying in the image of F . The diagram
will have the following properties:

(a) colim α<cf ‖X‖Bα,0 is isomorphic to X .
(b) There is a smooth chain of cardinals κα such that ‖Bα,n‖ = κα for all α < cf ‖X‖, n ∈ N.
(c) There exist objects aα+1,n ∈ A for successor α + 1 and mα,n ∈ A for all α < cf ‖X‖

and connecting maps aα+1,n−1 → aα+1,n, mα,n−1 → mα,n, mα,n → aα+1,n making up a
diagram of order type {0→ 1}×ω in A whose image under F is isomorphic to the ladder
of morphisms connecting the Mα,n to the Aα+1,n, for fixed α and n ∈ N.

(d) mα,n is κ+α -presentable for α < cf ‖X‖, n ∈ N+.
(e) Mα,n is the intersection of Aα+1,n and Bα,n in Sub(X), for all α < cf ‖X‖, n ∈ N+.
(f) For all limit ordinals β < cf ‖X‖ and n ∈ N+, Bβ,n−1 is contained in colim α<β Bα,n.

Let us show that the conclusion that X belongs to the image of F follows from (a),(c),(e),(f).
Taking the colimit in Sub(X) along columns of the big picture, one obtains a diagram

B(0) // B(1) // B(2) // . . . // B(α) // B(α + 1) //

M(0)

dd ::

M(1)

dd ::

. . . M(α)

dd 88
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of subobjects of X , where B(α) = colim nBα,n and M(α) = colim nMα,n. The map B(α) ←
M(α) is an isomorphism. Indeed, Bα,n is a subobject both of Bα,n+1 and Aα+1,n+1 hence, by
(e), of their intersection Mα,n+1. The inclusions Bα,n → Mα,n+1 induce the map B(α) → M(α)
inverse to B(α)←M(α). Each connecting map

M(α)→ B(α + 1) = colim nBα+1,n = colim nAα+1,n

is in the image of F by (c). For all limit ordinals β < cf ‖X‖, colim α<β B(α) is isomorphic to
B(β) by (f). Lemma 2.4 applies now to show that colim α<cf ‖X‖B(α) is in the image of F . But
that colimit is isomorphic to X , since it is a subobject of X and (a) holds. �

Let us construct the diagram now. To define the bottom row, we resume the notation of Prop. 2.2.
Since card(fp SetC) < ‖X‖, one has card(u(X)) = ‖X‖. Write u(X) as the union of a smooth
chain of subsets Sα, α < cf ‖X‖, with card(Sα) < ‖X‖ for all α. Without loss of generality,

max{cf ‖X‖, µF , card(C), φF,X} < card(S0)

where µF is the rank of accessibility of F and φF,X the threshold cardinal from assumption (ii) of
Theorem 1.6. Using Cor. 2.3, define the objects Bα,0 by transfinite induction:

• let B0,0 be a subobject of X such that S0 ⊆ u(B0,0) and card(S0) = ‖B0,0‖
• for successor α, let Vα be a subobject of X such that Sα ⊆ u(Vα) and card(Sα) = ‖Vα‖,

then let Bα,0 be the union of Bα−1,0 and Vα in Sub(X)
• for limit ordinals β, let Bβ,0 be colim α<β Bα,0 in Sub(X).

(a) is therefore satisfied. Write κα = ‖Bα,0‖; this is a smooth chain of cardinals for α < cf ‖X‖.
For each successor ordinal α + 1 < cf ‖X‖ choose a setWα+1 of objects that cannot be blocked
in presκ+α+1

[X].

The diagram is now constructed by induction on n. Whenever the objectsBα,n have been defined
for some n ∈ N, choose, for each limit ordinal β < cf ‖X‖, an arbitrary enumeration {bβ,n(i) | i <
κβ} of the elements of u(Bβ,n).

To find Aα+1,1 for a successor ordinal α + 1: since Wα+1 cannot be blocked in presκ+α+1
[X],

there exists Aα+1,1 ∈ Wα+1 containing Bα+1,0. Choose also some aα+1,1 ∈ A and isomorphism
iα+1,1 : F (aα+1,1)→ Aα+1,1.

To find Aα+1,n for n > 1: again since Wα+1 cannot be blocked in presκ+α+1
[X], there ex-

ists Aα+1,n ∈ Wα+1 containing Bα+1,n−1 (a fortiori Aα+1,n−1) and such that Aα+1,n−1 �
Aα+1,n ∈ presκ+α+1

[X] ∩ F . Since F -structures are assumed to extend along morphisms, there
exist aα+1,n−1 → aα+1,n ∈ A and isomorphism iα+1,n : F (aα+1,n)→ Aα+1,n making

F (aα+1,n−1) //

iα+1,n−1

��

F (aα+1,n)

iα+1,n

��

Aα+1,n−1 // // Aα+1,n

commute.
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Express now aα+1,n as colim D1 K1 for a functor K1 : D1 → A satisfying the hypotheses of
Lemma 2.5, with κ+α playing the role of the κ of Lemma 2.5. Since mα,n−1 is κ+α -presentable, the
composite mα,n−1 → aα+1,n−1 → aα+1,n factors through D1, say, through s1 ∈ D1. (When n = 1,
choose an arbitrary object s1 ∈ D1.)

For α < cf ‖X‖, n ∈ N+, use Cor. 2.3 to find a subobject Uα,n of X containing
{bβ,n−1(i)} for all limit ordinals β with α < β < cf ‖X‖, all i < κα

Bi,n for all i < α

Aα,n when α is a successor ordinal
Bα,n−1 when α is a limit ordinal.

such that ‖Uα,n‖ = κα. Let Aα+1,n ∩ Uα,n denote the intersection of Aα+1,n and Uα,n in Sub(X).
Express Aα+1,n as colim D2 K2, the κ+α -directed union of its κ+α -presentable subobjects. Note that
Aα+1,n ∩ Uα,n is such a subobject, corresponding, say, to s2 ∈ D2.

Cor. 2.7 applies now to give morphisms s1 → t1 ∈ D1 and s2 → t2 ∈ D2 such that F
(
K1(t1)→

aα+1,n

)
and K2(t2) → Aα+1,n are isomorphic as subobjects of Aα+1,n. Set mα,n to be K1(t1), so

(d) holds. The connecting map mα,n → aα+1,n is the colimit inclusion and (for n > 1) the map
mα,n−1 → mα,n is given by the composite mα,n → K1(s1)→ K(t1). Let Mα,n be F (mα,n). This
verifies condition (c).

Define Bα,n to be the union of Uα,n and Mα,n in Sub(X). Note that Bα,n includes Bi,n for i < α
and Aα,n (resp. Bα,n−1), hence fits into the diagram. ‖Bα,n‖ = κα, so (b) is maintained. Since
Mα,n is isomorphic to K2(t1), it is a subobject of Aα+1,n containing Aα+1,n ∩ Uα,n. Since in a
presheaf category the lattice of subobjects of any object is distributive,

Aα+1,n ∩Bα,n = Aα+1,n ∩ (Uα,n ∪Mα,n) = (Aα+1,n ∩ Uα,n) ∪ (Aα+1,n ∩Mα,n) = Mα,n

Thence condition (e) is satisfied.

Finally, Bα,n contains the elements bβ,n−1(i) for limit ordinals β with α < β < cf ‖X‖, i < κβ .
Since for limit β, one has κβ = sup{κα | α < β}, (f) holds. �

There remains the task of removing the assumption, stated at the beginning of section 4, that the
target category B in the main theorem is a functor category SetC . First, a definition from [2] and
an easy observation.

Definition 4.1. A functor G : A → B is iso-full if for every X, Y ∈ A and isomorphism
G(X)

i−→ G(Y ) there exists an isomorphism X
i0−→ Y such that G(i0) = i.

Proposition 4.2. (a) If G is iso-full then G-structures extend along morphisms. (b) If F : A→ B

and G : B→ C are functors such that F -structures extend along morphisms and G is iso-full, then
GF -structures extend along morphisms.

Proof. (a) Given g : X → Y and an isomorphism i : G(U) → G(X), let i0 be a morphism such
that G(i0) = i and set f = gi0 and j = idG(Y ) to satisfy Def. 1.1. (Note that this part does not
require that i0 be an isomorphism.) (b) Given g : X → Y and isomorphism i : GF (U)→ GF (X),
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find an isomorphism i0 : F (U) → F (X) such that G(i0) = i, then f : U → V and isomorphism
j : F (V )→ F (Y ) such that the diagram commutes. �

The next lemma gives sufficient conditions on B for the conclusion of the main theorem to
stand. These conditions state, essentially, that subobject structures of B become similar to subob-
ject lattices of presheaf categories, via a comparison functor G : B → SetC . The most technical-
looking condition, Lemma 4.3 (6), is that an analogue of the downward Löwenheim–Skolem the-
orem holds. Conditions (5) and (6) turn out to be redundant, i.e. to be consequences of slight
variants of conditions (1) through (4). We prefer to postpone discussing this and to use the lemma
to quickly and directly prove our main theorem first.

Lemma 4.3. Let B be an accessible category with filtered colimits such that there exists a small
category C, a functor G : B→ SetC with rank of accessibility µG and cardinal λG > µG with the
following properties:

(1) G is iso-full
(2) G reflects split epimorphisms
(3) G preserves filtered colimits
(4) G preserves monomorphisms
(5) for all objects X of B, the functors Sub(X)→ Sub(G(X)) induced by G are full (that is,

if U and V are subobjects of X such that G(U) in included in G(V ) then U is included in
V )

(6) for all regular cardinals κ > λG, object X ∈ B and κ-presentable subobject V � G(X),
there exists a κ-presentable subobject U � X such that G(U) contains V .

Let now A be an accessible category with filtered colimits, F : A → B a functor preserving
filtered colimits with rank of accessibility µF and object X ∈ B such that

max
{
λG, card(C), µF

}
< ‖X‖

and assumptions (i),(ii),(iii) of Theorem 1.6 hold. Then X is in the image of F .

Proof. Consider the composite GF : A → B → SetC . We want to apply the already proved case
of Theorem 1.6 to GF and the object G(X). Since µGF 6 max{µF , µG}, we have

max{µGF , card(fp SetC)} 6 max{µF , card(C)} < ‖X‖ .
Since G preserves filtered colimits and reflects split epimorphisms, Propositions 4.3 and 3.7 of [2]
imply that ‖G(U)‖ = ‖U‖ for all objects U with ‖U‖ > µG and thus ‖G(X)‖ = ‖X‖ is singular.

Let now κ be a regular cardinal greater than or equal to µG, F a κ-filter of Sub(X) and G(F)
its image in Sub(G(X)). Consider any well-ordered chain C of κ-presentable objects in G(F) of
length less than κ. Thanks to assumption (5), there exists a pre-image of this chain in F consisting
of κ-presentable objects. Since F is a κ-filter and G preserves filtered colimits, the colimit of C
exists in G(F). This implies that G(F) is a κ-filter too.

Assumption (6) implies that G takes κ-dense filters to κ-dense filters for all regular κ > λG.
By the assumption on F , there exists a cardinal φF,X < ‖X‖ such that for all successor κ+ >
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φF,X , the image of F contains a dense κ+-filter of Sub(X). Set φGF,G(X) = max{λG, φF,X} <
‖G(X)‖. Then assumption (ii) of Theorem 1.6 is satisfied forGF too. GF -structures extend along
morphisms by Prop. 4.2. The known case of Theorem 1.6 thus applies to GF : A→ B→ SetC to
show that G(X) lies in the image of GF . Since G is iso-full, this implies that X lies in the image
of F . �

Proposition 4.4. Any finitely accessible category B satisfies the assumptions of Lemma 4.3 with
C = (fpB)op and λG = card(fpB).

Proof. Consider the restricted Yoneda embedding G : B → SetC , sending X ∈ B to the presheaf
homB(−, X). Since G is a full embedding, conditions (1), (2) and (5) hold. (3) is well-known and
(4) holds for all Yoneda embeddings. Note that µG = ℵ0 by Prop. 2.1 and G preserves the ranks of
all objects with uncountable rank. Also note that B is equivalent to the category of flat presheaves
on fpB. This theory can be axiomatized by card(fpB) many sentences of the logic Lcard(fpB)+, ω0

,
cf. [11] 4.4.3 and 3.2.3, or [1] (2.1) through (2.5) for an explicit set of formulas. Condition (6) now
follows as in the proof of the downwards Löwenheim-Skolem theorem; see e.g. [11] 3.3.1.

This completes the proof of Theorem 1.6. �

We do not have a direct characterization of the class of categories that can play the role of the
target B in Theorem 1.6, but it is properly larger than the class of finitely accessible categories.
Recall that to any Abstract Elementary Class in Shelah’s sense [18], one can associate the category
whose objects are models and whose morphisms are strong embeddings. Let us refer to these as
AEC categories. Theorem 5.5 of [2] implies that any AEC category B satisfies the assumptions of
Lemma 4.3 via the inclusions B→ emb(Σ)→ SetC where Σ is the signature of the AEC, emb(Σ)
is the finitely accessible category of Σ-structures and their embeddings, and C is

(
fp emb(Σ)

)op.
(The existence of a Löwenheim–Skolem cardinal is one of the axioms of Abstract Elementary
Classes.) Not all AEC categories are finitely accessible; in fact, the least rank of accessibility of
an AEC category can be as large as desired.

For future reference, let us include Lemma 4.5, an improved version of Lemma 4.3. It involves
a smaller set of conditions but its proof relies on some advanced machinery from the 2-category
of accessible categories. It will not be needed in the rest of this paper; in all our applications here,
the category B will be finitely accessible (and often, locally finitely presentable).

Lemma 4.5. Let B be an accessible category with filtered colimits such that there exists a small
category C and functor G : B→ SetC with the following properties:

(1) G is iso-full
(2+) G is nearly full (see [2] Def. 5.1 for this notion)

(3) G preserves filtered colimits
(4+) G preserves monomorphisms and is faithful.

These data satisfy the conditions of Lemma 4.3 with λG = max{card(C)+, µG}.

Proof. A nearly full and faithful functor reflects split epimorphisms; see [2] Remark 5.2. It is
immediate that a nearly full functor preserving monomorphisms satisfies (5).
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To verify the Löwenheim-Skolem property (6), consider the pullback of categories

B0
//

G0
��

B

G
��

(SetC)mono
i

// SetC

where (SetC)mono is the category with the same objects as SetC but morphisms the monomor-
phisms, and i the inclusion. Said more directly, B0 can be considered as the subcategory of B with
the same objects as B, its morphisms being those morphisms of B that are sent to monomorphisms
by G.

Since faithful functors reflect monomorphisms, all morphisms of B0 are monomorphisms as
well. Since B has filtered colimits and G preserves them, and filtered colimits of monomorphisms
are monos in SetC , B0 has filtered colimits and they are preserved by G0.

Since i is a transportable functor, this pullback square is equivalent to a pseudopullback. (See
[11] Prop. 5.1.1.) By the Limit Theorem of Makkai and Paré, B0 is accessible and [3] gives a
bound for the degree of accessibility of B0.

Indeed, (SetC)mono and SetC are finitely accessible and i preserves filtered colimits. Let u(X)
denote the disjoint union of the sets underlying X , for a functor X : C → Set . Note that both
in (SetC)mono and SetC , one has ‖X‖ = card(u(X)) whenever card(C) < card(u(X)). Hence
i preserves κ-presentable objects for κ > card(C). By the proof of Theorem 3.1 of [3], B0 is
λG = max{card(C)+, µG}-accessible. Since it has filtered colimits, it is well-λG-accessible.

Let a regular κ > λG be given now, with an object X ∈ B and κ-presentable subobject V �
G(X). Considering X as an object of B0, write it as the κ-directed supremum of its κ-presentable
subobjects. Write G(X) as the κ-directed supremum of its κ-presentable subobjects containing V .
Applying the fixed-point Lemma 2.7 to G, there exists a κ-presentable U � X such that G(U)
contains V , as desired. �

For finitely accessible B with G the restricted Yoneda embedding, Lemma 4.5 specializes to
Prop. 4.4. Note that the existence of a functor into a presheaf category satisfying conditions (1),
(2+) and (3) of Lemma 4.5 characterizes what we called abstract elementary categories in [2].
These seem to share all key structural properties of Abstract Elementary Classes, but their mor-
phisms are not restricted to be monomorphisms. Conversely, Remark 5.8 (2) of [2] shows how to
associate an AEC to an abstract elementary category.

Comparison with the work of Shelah and Hodges. We discuss how Theorem 1.6 captures the
original examples of singular compactness, and add some new ones. First, an important family of
functors F : A → B so that F -structures extend along morphisms. We say that subobjects have
complements in a category A if coproduct inclusions are monomorphisms and conversely, for all
monomorphisms X � Y , there exists a monomorphism Z � Y such that X → Y ← Z is a
coproduct.
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Lemma 4.6. Suppose subobjects have complements in A and the functor F : A→ B preserves fi-
nite coproducts. Let Amono be the subcategory of A with the same objects as A, but with morphisms
the monomorphisms. Then F -structures extend along morphisms for the functor F : Amono → B.

Proof. Given g : X � Y and U of A, together with an isomorphism i : F (U) → F (X), let
Z � Y be a complement of g : X � Y and define V to be the coproduct of U and Z, with
f : U � V the coproduct inclusion. Consider the diagram

F (U) //

i
��

F (U) t F (Z)

itid
��

v
// F (V )

F (X) // F (X) t F (Z)
y
// F (Y )

The isomorphism j : F (V )→ F (Y ) needed to make the diagram of Def. 1.1 commute is y ◦ (i t
id) ◦ v−1. �

Examples of categories with complemented subobjects are Set , the functor category SetG where
G is a groupoid, Sh(B), the category of sheaves on a complete boolean algebra B equipped with
its canonical topology, and the category of k-vector spaces for a field k (or more generally, of
k-modules for a division ring k).

Example 4.7. For any one-sorted, equational variety of universal algebras, let Alg be the category
of algebras and homomorphisms and F : Set → Alg the free algebra functor. Theorem 1.6 applies
to the restriction F : Setmono → Alg; the threshold cardinal max{µF , card(fp Alg)} is the greater
of ℵ0 and the number of function symbols in the algebra.

Setting Alg to be groups or abelian groups, this recovers the historically first cases of singular
compactness. As Hodges [8] remarks, in this context one should look for applications of singular
compactness only among varieties with the Schreier property, that is, varieties with the property
that any subalgebra of a free algebra is free. A well-known theorem of Neumann et al. [14] [15]
asserts that the only varieties of groups with the Schreier property are groups, abelian groups, and
abelian groups of exponent p, for a prime p.

Example 4.8. Let k be a field, Vectk the category of k-vector spaces, Algk a category of k-linear
algebras, and F : Vectk → Algk the free algebra functor again. Theorem 1.6 applies to F :
(Vectk)mono → Algk. No classification of Schreier varieties is known, but classical theorems
of Kurosh, Shirshov and Witt give several examples: absolutely free algebras (also known as
‘non-associative algebras,’ i.e. algebras with a set of binary, k-linear operations and no identities),
commutative (but not associative) algebras, anti-commutative algebras, and Lie algebras and Lie
p-algebras. See [13] for an excellent overview.

The corresponding examples of singular compactness seem to be new. We do not know, how-
ever, whether the statement is sharp here; for example, whether there exists a non-free Lie algebra
whose size is a regular cardinal, all of whose sub-Lie-algebras of lesser, regular cardinality are
free. (Such examples are known to exist for groups and abelian groups, cf. [5].)
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Almost free modules over a ring R correspond to the case of the free functor F : Setmono →
ModR. Note that for an object X of ModR, its size ‖X‖ is the least cardinal κ such that X is
κ-generated as an R-module, just as in [5].

Example 4.9. Let B be a locally finitely presentable category and Ui, for i ∈ I , a set of objects
of B. Let the functor F : Set I → B take the collection of sets {Xi}i∈I to

⊔
i∈I tXiUi, that

is, the coproduct of the Xi-fold copowers of the Ui. Theorem 1.6 applies to the restriction F :
(Set I)mono → B, with threshold cardinal the greater of the supremum of rank(Xi), i ∈ I , and
card fpB. X belongs to the image of F if and only if it is Ui-decomposable, that is, isomorphic to
the coproduct of a set of objects, each of which is one of the Ui. Setting B to be the category of
R-modules, one obtains the usual notion of decomposable modules.

The following example is also due to Hodges [8], who treats it in a slightly different form. Here
the target category is finitely accessible, but not locally finitely presentable.

Example 4.10. Let k be any field, let Fieldk be the category of field extensions of k and homo-
morphisms, and let F : Setmono → Fieldk take the set I to the purely transcendental extension of
k generated by the set of indeterminates xi for i ∈ I . That F -structures extend along morphisms
follows immediately from the fact that if X = {xi | i ∈ I} and Y = {yj | j ∈ J} are disjoint
sets of variables then k(X, Y ) and k(X)(Y ) are isomorphic. (Note that F is not a left adjoint and
Lemma 4.6 does not apply here.)

A field L is in the image of F , that is, isomorphic to F (I) for some set I , if and only if it is a
purely transcendental extension of k. For an object X/k of Fieldk, note that ‖X/k‖ is the least
cardinal κ such that X is κ-generated as an extension of k. Singular compactness thus says in this
case: if L is an overfield of k that is singularly generated over k, and such that all intermediate
fields between k and L that are regularly generated over k are purely transcendental, then L itself
is purely transcendental.

It is not clear to us whether this theorem has an applicable case. Lüroth’s theorem states that
all fields intermediate between k and k(x), for a single indeterminate x, are purely transcendental
extensions of k of degree 1, and the theorem of Castelnuovo-Zariski states that when k is alge-
braically closed, all fields intermediate between k and k(x, y), for indeterminates x and y, are
purely transcendental extensions of k. (This is not necessarily so for k not algebraically closed.)

Singular compactness is sometimes said to be about “an abstract notion of free”. (Cf. the first
sentence of Eklof [4], or the last section of Hodges [8].) This is indeed so in the above examples,
where the functor F is a left adjoint, i.e. free construction. But there are cases of the main theorem
where the intuition of “free structure” is absent.

Example 4.11. Let lin-Graph be the category whose objects are triples 〈X,R,≺〉 where X is a
set and R a symmetric, irreflexive relation on X (i.e. (X,R) is a graph) and ≺ is a linear order on
the set of vertices X . A morphism in lin-Graph is to be a monotone, downward closed embedding
of subgraphs. That is, a morphism from 〈X,R,≺X〉 to 〈Y,Q,≺Y 〉 is an injective map g : X → Y
such that uRv if and only if g(u)Qg(v); if u ≺X v then g(u) ≺Y g(v); and if v is in the image of
g and u ≺Y v, then u is in the image of g. Let Graph be the category of graphs and embeddings,
and F : lin-Graph→ Graph the functor that forgets the ordering of vertices. It is immediate that
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F -structures extend along morphisms. Indeed, let g be a morphism from 〈X,R,≺X〉 to 〈Y,Q,≺Y 〉
and let i : (U, S) → (X,R) be an isomorphism of graphs. Let V be the disjoint union of U and
Y \ g(X) and j : V → Y the bijection that is g ◦ i on U and the identity on Y \ g(X). Define an
order on V by setting r ≺V s

for all r, s ∈ U such that r ≺U s
for all r ∈ U and s ∈ Y \ g(X)

for all r, s ∈ Y \ g(X) such that r ≺Y s.
The graph with linearly ordered vertices 〈V, j−1Q,≺V 〉 and f : 〈U, S,≺U〉 → 〈V, j−1Q,≺V 〉
which is the identity on U , complete the diagram of Def. 1.1.

Fix a regular uncountable cardinal µ, and consider the full subcategory µ-lin-Graph of
lin-Graph whose objects 〈X,R,≺〉 are also supposed to satisfy that for all vertices v ∈ X ,

(4.1) card{u ∈ X | u ≺ v and uRv} < µ .

F -structures extend for the forgetful functor F : µ-lin-Graph → Graph, as shown by the same
construction.

The category µ-lin-Graph has directed colimits, computed as directed unions on underlying
graphs. (The condition that morphisms be downward-closed monotone embeddings ensures that
(4.1) is satisfied for the directed union too.) Thanks to (4.1), any object of µ-lin-Graph is the µ-
directed colimit of its restrictions to downward closed subgraphs of size less than µ. Since there is
only a set of isomorphism classes of objects in µ-lin-Graph with underlying set of size less than µ,
and these objects are µ-presentable, µ-lin-Graph is a µ-accessible category with filtered colimits.
Graph is finitely accessible and F preserves filtered colimits; thus Theorem 1.6 applies.

This method of rigidifying models by adding an underlying linear order is not limited to graphs,
but works more generally in the category Str(Σ) of structures with signature Σ. Since any Abstract
Elementary Class is naturally a subcategory of some Str(Σ), one can obtain examples of functorial
singular cardinal compactness with values in AEC’s this way.

Example 4.12. Let µ-well-Graph be the subcategory of µ-lin-Graph where the ordering of ver-
tices is required to be a well-order. Keep the rest of the set-up of Example 4.11. The same
arguments work, with small changes. Shelah says that such a graph has coloring number µ; see
also Hodges [8].

Transfinite induction shows that any object of µ-well-Graph is µ-colorable. What of graph
colorability without well-ordered vertices? Let µ-Graph be the category of µ-colored graphs and
embeddings (preserving the coloring) and let F : µ-Graph→ Graph be the forgetful functor. F -
structures then do not extend along morphisms. More plainly, if H is a subgraph of a µ-colorable
graph G, then it is not necessarily the case that all µ-colorings of H extend to a µ-coloring of G.

For a strongly compact cardinal µ, it does hold that if all subgraphs of G of lesser cardinality
are µ-colorable, then G itself is µ-colorable, regardless of the cardinality of G. This example
highlights that singular cardinal compactness is an expression of not so much the compactness as
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the approximability of a singular-sized structure by substructures provided those structures can be
extended along “underlying sets”. The meaning of this is captured concisely by Def. 1.1.

In [8], Hodges gives an elegant axiomatization of singular compactness, based on set-systems
that he calls “algebras” and “bases”. (See [17] for Shelah’s earlier unification of the cases he
discovered.) Let us show how Hodges’s axioms are subsumed under the functorial formulation.
Roughly speaking, [8] considers the situation F : A→ B where A is the poset of free subalgebras
of the target object X and free inclusions among them, B is the category of sets, and F associates
to a subalgebra its underlying set. Hodges’s setup follows, changing his notation and terminology
slightly so as to make a better parallel with the rest of this paper.

Let X be a set and µ an infinite cardinal. Let S be a set of subsets of X . For each element U of
S, let a set B(U), possibly empty, be given; each element of B(U) is to be a subset of S. (X is to
be thought of as the set underlying the target algebra; its size will be assumed singular later. µ is a
certain threshold cardinal. The elements of S are the sets underlying the subalgebras of X . B(U)
is non-empty if and only if U is a “free algebra”. In that case, each F ∈ B(U) should be thought
of as data equivalent to giving a “basis” of U . Intuitively, however, a basis B of a free algebra is
identified with the set of free algebras generated by subsets of B; in particular, a subset of S.)

The axioms are:

I. S is closed under unions of chains, and for every set Y ⊆ X there exists U ∈ S with
Y ⊆ U and card(U) 6 card(Y ) + µ.

II. For all U ∈ S and F ∈ B(U): if Z ∈ F then Z ⊆ U ; the collection F is closed under
unions of chains; and for every set Y ⊆ U there exists Z ∈ F with Y ⊆ Z and card(Z) 6
card(Y ) + µ.

III. Given F ∈ B(U) and V ∈ F, let us write F|V for the subset {Z ∈ F | Z ⊆ V } of F. Now
the axiom is: for all F ∈ B(U) and V ∈ F, one has F|V ∈ B(V ).

IV. To ease notation, for U, V ∈ S , let us write U C V to mean that there exists F ∈ B(V )
such that U ∈ F. (Intuitively, U is a “free factor” of V .) Now the axiom is: if U C V and
F ∈ B(U), then there exists F′ ∈ B(V ) such that F′|U = F.

V. Let Uα, α ≺ κ, be a continuous chain of elements of S and let Fα ∈ B(Uα) be such that
Fα = Fβ|Uα for all α ≺ β ≺ κ. Then{
∪α≺κ Zα | Zα ∈ Fα where Zα, α ≺ κ, is a continuous chain

}
∈ B

(
∪α≺κ Uα

)
.

For U ∈ S, let us write “U is free” to mean “B(U) is non-empty”. Singular compactness now takes
the form: assume that a set-system satisfies Axioms I-V. Assume µ < card(X), that card(X) is
singular, and that U is free for all U ∈ S with card(U) < card(X). Then X is free. (The text of
[8] omits the restriction ‘card(U) < card(X),’ but surely that is what’s meant.)

To see this as a case of Theorem 1.6, let A be the set of “bases”, that is, subsets of S of the
form F, with F ∈ B(U) for some U ∈ S. Note that Axiom II implies that ∪F = U whenever
F ∈ B(U); that is, a basis determines what it is a basis of. Define the relation F → F′ to mean that
F = F′|U where U = ∪F. It is immediate that → is reflexive (and antisymmetric), and Axiom
III implies that it is transitive, thus turning A into a small (a fortiori accessible) category. Thanks
to Axioms II and V, A has colimits of well-ordered chains; as is well-known, this implies that A
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has all directed colimits. Let F : A → Set send F to the set ∪F. Axioms II and V ensure that
F is a functor, preserving directed colimits. The image of F is a filter of Sub(X) that is µ-dense
by Axiom I and the assumption that all subalgebras of size less than card(X) are free. Note that
U ⊆ V is the F -image of a morphism of A if and only if U C V . Axiom IV then says exactly that
F -structures extend along morphisms. �

5. CELLULAR VERSION

Some old examples of singular cardinal compactness due to Shelah, as well as recent ones
involving filtered modules — see [4] or [6] — while based on Hodges’s axioms and thus part of
the functorial formulation, are intricate enough to understand in detail. In fact, the formulation
of singular compactness in terms of cellular or ‘relatively free’ objects sheds new light on many
examples that we have already seen.

Definition 5.1. Let X be a class of morphisms in a category B. A morphism m of B is X -cellular
if there exist an ordinal α and a smooth chain D :

{
β | β 6 α

}
→ B such that D(β)→ D(β + 1)

is a pushout of a member of X whenever β < α, and m = D(∅) → D(α). An object X in B is
called X -cellular if the unique morphism 0→ X from an initial object is X -cellular.

Example 5.2. Let B be the category of topological spaces and let X = {∂Dn → Dn | n ∈ N},
the inclusions of the boundary spheres of the unit balls in Rn. X -cellular maps are the relatively
cellular maps and X -cellular spaces are the cellular spaces of topology.

Example 5.3. Keeping the notation of the introduction, let X = {F∅ → F•} in a category of
algebras. The X -cellular objects are the free algebras.

Example 5.4. Let Ui, for i ∈ I , be a set of objects of B and let X = {0→ Ui | i ∈ I} where 0 is
an initial object. The X -cellular objects are the {Ui}i∈I-decomposable ones, cf. Example 4.9.

Example 5.5. Let B be the category of graphs and graph homomorphisms. Objects of this category
are pairs 〈U,A〉 where U is a set and A is a symmetric, irreflexive relation on U ; morphisms are
maps u : U1 → U2 preserving the relation. This category is locally finitely presentable. Let µ be
a cardinal and X consist of all inclusions 〈U,A〉 → 〈U ∪ •, A ∪ (U × •) ∪ (• × U)〉 where U
has cardinality < µ and • is a singleton (we take a representative set of these morphisms). Then
X -cellular objects are precisely graphs having coloring number 6 µ, i.e. graphs whose vertices
can be well-ordered such that property (4.1) holds for every vertex v. Note that the well-ordering
of vertices, which appeared somewhat artificial in Example 4.12, is here a natural indicator of
cellularity.

Example 5.6. Let B be the category of (directed) bipartite graphs. Objects of this category are
triples 〈U, V,E〉 where U and V are sets and E ⊆ U × V . Morphisms are (u, v) : 〈U1, V1, E1〉 →
〈U2, V2, E2〉 where u : U1 → U2 and v : V1 → V2 are maps such that (x, y) ∈ E1 implies that
(u(x), v(y)) ∈ E2. This category is locally finitely presentable. Let X consist of the following
three morphisms

(1) f1 : 〈∅,∅,∅〉 → 〈◦, •, ?〉
(2) f2 : 〈∅,∅,∅〉 → 〈∅, •,∅〉
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(3) f3 : 〈◦, •,∅〉 → 〈◦, •, ?〉

where ∅ is the empty set and ◦, •, ? are one-element sets. Informally speaking, f1 creates an
edge, f2 creates a vertex in the second partition, and f3 creates an edge between two existing
vertices. X -cellular objects are precisely bipartite graphs 〈U, V,E〉 having a transversal, i.e. some
injective map t : U → V such that (u, t(u)) ∈ E for all u ∈ U . That an X -cellular graph
possesses a transversal is immediate by transfinite induction. For the converse, a graph (U, V,E)
with transversal t can be built up from the empty graph with U cells of type f1; V \ t(U) cells of
type f2; and E \ {(u, t(u)) | u ∈ U} cells of type f3, in that order.

Much as free algebras extend along the functor F : Setmono → Alg (but not, in general, along
F : Set → Alg) cellular structures extend along suitable monomorphisms of posets indexing the
cell attachments. We recall some definitions from [12].

Definition 5.7. A poset A is good if it is well-founded and has a least element. A good poset A
is µ-good if its initial segments {y ∈ A | y 4 x} have cardinality less than µ for all x ∈ A.
An element x ∈ A is limit if the strict initial segment {y ∈ A | y ≺ x} is non-empty and does
not have a top element. A diagram D : A → B is smooth if for every limit x ∈ A, the diagram
D(−, x) : Dy → Dx|y≺x is a colimit cocone on the restriction of D to {y ∈ A | y ≺ x}.

Proposition 5.8. Let B be a cocomplete category, µ a regular uncountable cardinal and X a class
of morphisms in B with µ-presentable domains. Let A be the category whose objects are smooth
diagrams D : A→ B where

- A is a µ-good poset
- for all a ∈ A, the object D(a) is X -cellular and µ-presentable in B

- for all a 4 b ∈ A, the morphism D(a)→ D(b) is X -cellular.

A morphism from D1 : A1 → B to D2 : A2 → B is a monotone map m : A1 → A2 such that
D1 = D2m and m is a downward-closed embedding, i.e. m(a) 4 m(b) if and only if a 4 b and if
b 4 m(a) for a ∈ D1, b ∈ D2 then b is in the image of m.

Let F : A→ B be the functor sending the diagramD : A→ B to its colimit. Then F -structures
extend along morphisms.

Proof. We build heavily on the results of [12]. By [12] 4.14 and 4.15(1), an object of B is X -
cellular if and only if it belongs to the image of F . Let D1 : A1 → B and D2 : A2 → B be objects
of A and m a morphism of A determined by a downward-closed embedding m : A1 → A2. Let
F (m) : F (D1) → F (D2) be the induced morphism on colimits. Let E : B → B be another
object of A with F (E) ∼= F (D1). By [12] 4.10, there is an extension E∗ : B∗ → B of E to a
µ-good µ-directed diagram of X -cellular morphisms such that B is downward-closed in B∗ and
the induced morphism F (E) → F (E∗) on colimits is an isomorphism. It immediately follows
from the construction in [12] 4.10 that E∗ is a diagram of X -cellular µ-presentable objects, that
is, an object of A. Now, we have an X -cellular morphism F (m) : F (D1) → F (D2) and an
isomorphism F (D1) → F (E∗) and we need to make E∗ to be an initial segment in a µ-good
diagram D′ : A′ → B of X -cellular µ-presentable objects and X -cellular morphisms such that
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F (D′) ∼= F (D2) and the composition E → E∗ → D′ yields the desired reparametrization of
m. Here we can imitate the proof of [12] 4.11. Let m01 be the first morphism in the cellular
decomposition of m. Then we have a pushout

A1
m01

// A11

X

u1

OO

g
// Y

u2

OO

where g ∈ X . Thus the composition of u1 with the isomorphism F (D1)→ F (E∗) is a morphism
from X to the colimit of E∗. Since E∗ is µ-directed and X is µ-presentable, this composition
factorizes through a morphism u : X → E∗(b) for some b ∈ B∗. We take all pushouts of m01

along E∗(t)u where t : b → b′ is a morphism in B∗. We get a new µ-good µ-directed diagram
E∗1 : B∗1 → B of X -cellular µ-presentable objects and a downward-closed embedding B∗ → B∗1 .
Moreover F (E∗1) ∼= A11. Then D′ is obtained by continuing this procedure where, in limit steps,
we take the ∗-closure of the union of preceding diagrams. �

Theorem 5.9. Let B be a locally finitely presentable category, µ a regular uncountable cardi-
nal and X a class of morphisms with µ-presentable domains. Let X ∈ B be an object with
max{µ, card(fpB)} < ‖X‖. Assume

(i) ‖X‖ is a singular cardinal
(ii) there exists φ < ‖X‖ such that for all successor cardinals κ+ with φ < κ+ < ‖X‖, there

exists a dense κ+-filter of Sub(X) consisting of X -cellular objects.

Then X is X -cellular.

Proof. We retain the notation of Prop. 5.8. The category A has directed colimits, computed as
in the category of posets (i.e. on underlying sets). Since initial segments of µ-good posets have
cardinality less than µ, any object D : A → B of A is the µ-directed union of the restrictions of
D to downward closed subposets of A of cardinality less than µ. Since objects A → B of A with
card(A) < µ are µ-presentable and there is only a set of isomorphism classes of such objects, A
is a µ-accessible category with filtered colimits.

We are going to apply Theorem 1.6 to the functor F : A→ B sending the diagram D : A→ B

to its colimit. F obviously preserves filtered colimits. Prop. 2.1 implies that µF 6 µ and Prop. 5.8
verifies the last condition of 1.6. �

Examples 5.3 through 5.5 recover familiar cases of singular compactness. Example 5.6 yields
Shelah’s theorem on set transversals. To any set of sets S, one can associate the bipartite graph
〈S,∪S,∈〉 where there is an edge from A ∈ S to a ∈ ∪S if and only if a ∈ A. A transversal of
S, i.e. a set of disjoint representatives, is then the same as a transversal of the associated bipartite
graph. Note that a subobject 〈U0, V0, E0〉 of 〈U, V,E〉 is given by injective maps i : U0 → U and
j : V0 → V that preserve edges. In particular, every subset S0 ⊂ S gives rise to a sub-bipartite
graph, but not all sub-bipartite graphs of S arise this way.
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Proposition 5.10. Let λ0 < λ be infinite cardinals with λ singular. Let S be a set of sets such that
card(S) = λ and card(A) 6 λ0 for all A ∈ S. Suppose that S0 has a transversal for all subsets
S0 ⊂ S with card(S0) < λ. Then S itself has a transversal.

Proof. Apply Theorem 5.9 to the object X = S with the category B played by bipartite graphs,
the morphisms X of Example 5.6, and µ = ℵ1. Note that for a bipartite graph 〈U, V,E〉,

‖ 〈U, V,E〉 ‖ = max{card(U), card(V )}
so card(S0) 6 ‖S0‖ 6 max{card(S0), λ0} for any S0 ⊆ S. (We only consider infinite graphs, and
do not notationally distinguish sets-of-sets from graphs.) In particular, ‖S‖ = λ. Consider the set
Fκ of all subsets S0 ⊂ S with card(S0) < κ. Obviously, Fκ is a κ-filter of Sub(S) for each regular
κ > λ0. Moreover, Fκ is κ-dense in Sub(S) for any regular λ0 < κ < λ. Indeed, any subobject
〈U, V,E〉 of S is contained in 〈U,∪U,∈〉 and for any κ > λ0, if 〈U, V,E〉 is κ-presentable, so is
〈U,∪U,∈〉. This verifies condition (ii) of 5.9. �

Theorem 5.9 permits the collection of morphisms X to be a proper class, as long as the ranks of
their domains are bounded by some cardinal κ. For a given object X , only a subset X0 of the class
X is needed to exhibit a dense filter of subobjects of X as X -cellular, i.e. to satisfy condition (ii)
of Theorem 5.9. Obviously, X will already be X0-cellular, but the set X0 may depend on X . There
are also cases when a subset X0 ⊂ X can be shown to exist such that the classes of X -cellular
and X0-cellular objects are the same. This happens in deep work of Eklof et al. that we alluded to
above.

Example 5.11. Let B be the category of R-modules and Q a set of R-modules. Let X be the
class of all Q-monomorphisms, i.e., monomorphisms whose cokernel is isomorphic to a member
of Q. Then X -cellular objects are precisely the Q-filtered modules. By a result of Saorı́n and
Šťovı́ček [16], X -cellular objects coincide with X0-cellular ones for a certain subset X0 of X .
Thus Theorem 5.9 implies the singular compactness theorem for Q-filtered modules. (See [4] or
[6].) The threshold cardinal max{κ, card(fpB)} of 5.9 works out to be an uncountable upper
bound for the presentability ranks of modules from Q.

If we take B to be the category of abelian groups and Q to consist of the group of integers,
X -cellular objects are precisely free abelian groups and we get Shelah’s [17] original singular
compactness for free abelian groups again.

Remark 5.12. In many examples of the cellular version of singular compactness, the generating
cellular maps in X are monomorphisms, and monomorphisms are preserved by pushouts in B. In
particular, cellular subobjects of the target X of Theorem 5.9 will be built up as smooth chains of
subobjects of X . But it is easy to find locally finitely presentable categories where the pushout
of a monomorphism need not be a monomorphism. For example, in the category of rings and
homomorphisms, the below square is a pushout:

Z //

��

R

��

Q // 1



CELLULAR OBJECTS AND SHELAH’S SINGULAR COMPACTNESS THEOREM 27

where R is any finite ring, and 1 is the terminal (one-element) ring. A subobject of X thus may
be cellular, with this fact not being “witnessed” by any smooth chain that lies entirely within the
subobject lattice of X . Perhaps this is the most significant departure of Theorem 5.9 from singular
cardinal compactness as applying to set-systems and inclusions.
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