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In many environments, product yield is heavily influenced by equipment condition. Despite this fact, previous research
has either focused on the issue of maintenance, ignoring the effect of equipment condition on yield, or has focused on
the issue of production, omitting the possibility of actively changing the machine state. We formulate a Markov decision
process model of a single-stage production system in which demand is random. The product yield has a binomial
distribution that depends on the equipment condition, which deteriorates over time. The objective is to choose
simultaneously the equipment maintenance schedule as well as the quantity to produce in a way that minimizes the sum
of expected production, backorder, and holding costs. After proving some results about the structural properties of the
optimal policy, numerical problems are used to compare this method to the typical approach of solving the maintenance
and production problems sequentially. The results show that the simultaneous solution provides substantial gains over
the sequential approach. In the cases studied, the proposed method resulted in an average cost savings of approximately
18%.
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Introduction

Product quality and yield are heavily dependent on

equipment condition in a wide range of manufacturing

environments. For example, as drill bits in a machine shop

wear out, finished product quality will deteriorate, and the

number of functioning chips emerging from an integrated

circuit manufacturing line will decrease as the ultra-clean

production environment becomes contaminated. The goal of

this paper is to answer the question: how can information

about yield and equipment condition be used to improve

decisions about machine maintenance and inventory man-

agement? By exploiting all the available information, firms

can increase quality, reduce inventory costs, and better meet

customer demand.

Despite the apparent connections, problems addressing

equipment condition, product yield, and inventory manage-

ment have traditionally been treated independently. Equip-

ment maintenance research has focused on the problem of

when to repair or replace deteriorating equipment in order to

minimize costs, and has ignored the potential impact of

equipment condition on product quality and inventory

management. Most inventory models that incorporate

random yield treat equipment condition as something that

is beyond the decision maker’s control. Models that do allow

control of the process condition consider only two states, in-

control and out-of-control, and all products manufactured

when the process is out-of-control are defective. In short,

none of these models addresses the situation in which there

are intermediate machine states and the decision maker

exercises some control over the machine condition.

To explore the interaction between yield, equipment

condition, and inventory management, we formulate a

Markov decision process (MDP) model of a single-stage

production system in which demand is random and the

equipment condition, which deteriorates over time, affects

the product yield. The decision maker simultaneously

chooses the equipment maintenance schedule as well as the

production quantity in a way that minimizes the sum of

expected (discounted) production, backorder, and holding

costs. We refer to this as the simultaneous approach. After

proving some results about the structural properties of the

optimal policy, numerical problems are used to compare

the proposed policy to the typical method, which solves the

maintenance and inventory problems separately. We refer to

the latter solution method as the sequential approach. The

results of more than 26000 problems show that the

simultaneous solution provides an average cost savings of

approximately 18% as compared to the sequential approach.
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The paper proceeds as follows. First, we review the

literature related to this problem. Next, we present the MDP

model and examine the properties of the optimal policy. We

then present some results of the numerical problems. The

final section presents conclusions and discusses directions of

future research.

Literature review

The literature related to this problem can be divided into

three categories. The first category includes models of

production/inventory systems in which yield is a random

variable, but process condition is not under the decision

maker’s control. Models in the second category allow some

control of the process condition. The third category includes

production models with supply disruptions.

The main question addressed by papers in the first

category is: how much should be ordered or produced given

the uncertainty regarding yield? Yano and Lee1 present a

detailed review of the research in this category, and we

mention only a few representative papers here. Gerchak et al2

and Henig and Gerchak3 examine single-stage, periodic-

review systems with random demand and yield. Wang and

Gerchak4 and Parlar and Perry5 consider systems with

uncertain capacity/supply as well. All these papers primarily

focus on the structural properties of the solution. Mazzola

et al,6 Baker and Ehrhardt,7 and Bollapragada and Morton8

focus on developing heuristic solution procedures to solve

for near-optimal policies efficiently, making different

assumptions about demand variability, cost structure, etc.

Lee and Yano9 and Barad and Braha10 explore input control

decisions for multi-stage systems with deterministic demand.

Gerchak et al11 and Gurnani et al12 examine multi-stage

systems with random demand. In all the models in this

category, the effect of the equipment or process condition is

not explicitly linked to product yield or is assumed to be

beyond the decision maker’s control.

The second literature category includes production/

inventory models that explicitly make the link between

equipment condition and yield by extending the classical

economic manufacturing quantity (EMQ) model to include

the possibility of imperfect process condition, and hence

defective output. Rosenblatt and Lee13 and Porteus14

examine the case in which product quality is determined

only after production. Lee and Rosenblatt15 and Porteus16

allow inspection during the production cycles. Lee and

Park17 treat the case where defects can be discovered before

or after the item is sold, with different item costs depending

on the outcome. Makis and Fung18 allow imperfect process

condition and equipment failure. In these models, the

demand is deterministic, and the randomness associated

with yield is reduced to one dimension: either the process is

in-control, resulting in output of perfect quality, or the

process is out-of-control, resulting in defective output.

The third literature category related to our problem

includes lot-sizing models that incorporate supply disrup-

tions. Groenevelt et al19,20 extend the EMQmodel to include

the possibility of machine failure, but yield and demand are

both deterministic. Arreola-Risa and DeCroix21 study a

situation in which demand is random and supply can be

disrupted for random periods. In all these models, there are

only two states: operational and non-operational. Venkate-

san22 models a periodic-review production/inventory system

with a single machine that deteriorates over time. At the

beginning of each period, one decides not only how much to

produce but also whether or not to replace the machine.

While the equipment condition clearly affects the quantity of

production, the quality of output is assumed to be perfect in

each of these models.

Sloan and Shanthikumar23 examine a single-stage, multi-

product system with variable yield and deteriorating

equipment. Their model is related to the current problem

in that the equipment condition can be reset to improve

yield; however, demand does not vary and backlog and

holding costs are not considered. Thus, the focus is on

determining which product(s) to produce rather than how

many to produce.

In summary, our model is the first of a system in which

demand is stochastic, yield is variable, equipment condition

is explicitly linked to product yield, and the decision maker

exercises some control over the machine condition.

Model

We consider the problem of determining production

quantities for a single-product, single-stage production

system with uncertain demand and variable yield. Units

are processed on a single machine whose condition

deteriorates over time according to a Markov chain with

known transition probabilities, and the level of deterioration

affects the quality of the output and the operating costs. At

the beginning of each period, we observe the state of the

machine and the inventory level and make two decisions:

whether or not to repair the machine and how many units to

produce. If we choose to repair, the machine instantaneously

returns to like-new condition with probability one. (Refer-

ring to our earlier examples, this would correspond to

replacing the drill bit in the machine shop or cleaning the

equipment in the integrated circuit plant.) The decision of

how many units to release into the system must account for

the fact that demand is uncertain, yield is uncertain, and

there are costs associated with inventory shortages and

excesses.

Model formulation

We introduce the following notation and definitions:
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The machine state transitions depend only on the

current state and the action taken. Specifically, pij
aq¼

Pr{In�1¼ j|In¼ i, an¼ a, qn¼ q}. We assume that the
equipment deterioration is a result of production; any non-

zero production quantity can make the machine condition

worse. However, if no units are produced and the machine is

not repaired, then the machine state does not change. If the

machine reaches stateM, it cannot leave this state unless it is

repaired. For a current machine state i and repair action

a¼ 0, these conditions are expressed as

p
0q
ij ¼

pij for q40; i ¼ 0; 1; . . . ;M � 1; j ¼ 0; 1; . . . ;M � 1
1 for q ¼ 0; i ¼ 0; 1; . . . ;M � 1; j ¼ i
0 for q ¼ 0; i ¼ 0; 1; . . . ;M � 1; j 6¼ i
1 for q ¼ 0; 1; . . . ;Q; i ¼M; j ¼M
0 for q ¼ 0; 1; . . . ;Q; i ¼M; j 6¼M

8>>>><
>>>>:

:

We assume that the repair action can be taken while in any

state and that repairing the machine instantaneously returns

it to state 0 with probability one. Thus, when a¼ 1 we have
pij
1q¼ p0j0q for each i¼ 0, 1,y, M, j¼ 0, 1,y, M, and q¼ 0,
1,y, Q.

We also assume that the machine deterioration rate is

relatively fast as compared to the production rate: otherwise,

little could be gained by considering the interaction between

maintenance and production scheduling. For example, if it

takes weeks of use for the machine to deteriorate from one

state to the next, but it takes only hours to produce a

product, then maintenance decisions would not have much

of an effect on the weekly production schedule.

Inventory transitions depend on the current inventory

level, the demand, and the production quantity:

Xn�1¼Xn�DnþZn. Since the state transitions depend only

on the current state and action, we can treat the problem as

an MDP.

The output quantity Zn is a random variable that depends

on input quantity qn. We assume that the yield (output)

follows a binomial distribution and define fi
a(k|q) as the

probability of having k units of output that function

properly when the machine state is i, action a is taken, and

the input quantity is q. When a¼ 0 we have

f0i ðkjqÞ ¼
q
k

� �
ðbiÞkð1� biÞq�k

When a¼ 1, we have fi1(k|q)¼f0
0(k|q) for each i, since the

machine is returned to state 0 with probability one.

We assume that demand is independent and identically

distributed in each period, that is, Dn¼D for each n, and
denote the associated probability mass function as

x(d)�Pr{D¼ d}. We assume that the demand probability
distribution is well-behaved (eg, has finite first and second

moments), but we do not assume a specific distribution or

functional form.

Each period unfolds as follows. First, we observe the

machine state and the inventory level. Next, we choose

whether or not to repair the machine and how many units to

start into the system. We then experience the demand.

Finally, costs are incurred.

Define Vn[(i, x), (a, q)] as the discounted expected cost

when the initial machine state is i, the initial inventory level

is x, repair action a is taken, q units are started into the

system, and n periods remain. The objective is to determine

the maintenance schedule and production quantity that

minimizes the sum of expected repair, production, and

backlog/holding costs. Let Vn(i, x) denote the minimal

discounted expected cost, that is, Vn(i, x)¼min(a, q){Vn[(i, x),
(a, q)]}. The minimal cost is found by solving the following

dynamic programming recursion:

Vnði; xÞ ¼min
ða;qÞ

RðaÞ þ cq þ
X1
d¼0

Xq
k¼0

"
bðd � x� kÞþ

(

þ hðx þ k� dÞþ þ a
XM
j¼0

p
aq
ij Vn�1ðj; x þ k� dÞ

#


fai ðkjqÞxðdÞ
)

ð1Þ

where [y]þ ¼max[0, y]. For the single-period problem, we
have

V1ði; xÞ ¼min
ða;qÞ

RðaÞ þ cq þ
X1
d¼0

Xq
k¼0

½bðd � x� kÞþ
(

þ hðx þ k� dÞþ �fai ðkjqÞxðdÞ
) ð2Þ

We assume that all costs are bounded and that cob and

b4h. We also assume that there is sufficient capacity to meet

demand on average, that is, Qb0XE[D].

Note that the number of machine states is finite, the

number of inventory states is countable, and the number of

n number of periods remaining

In machine state; InA{0, 1,y, M}
Xn inventory level; XnA{y, �2, �1, 0, 1, 2,y}
an repair action taken; an¼ 1 if the machine is repaired,

an¼ 0 otherwise
Dn number of units demanded; DnA{0, 1, 2,y}
Q maximum production (input) quantity

qn input quantity; qnA{0,y, Q}
Zn output quantity; ZnA{0,y, Q}
bi probability that each unit produced while the

machine is in state i functions properly

pij
aq the probability that the machine is in state j at the

beginning of the next period given that in the current

period the machine is in state i and one takes repair

action a and inputs production quantity q

R(a) repair cost function; R(Q)¼ 0 and R(1)¼R
h holding cost per unit per period

b backlog cost per unit per period

c production cost per unit of input

a discount factor; 0pao1
S state space: {y, �2, �1, 0, 1, 2,y}
 {0, 1,y,M}
A action space: {0, 1}
 {0,y, Q}.
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actions is finite. Applying standard MDP theory arguments,

the value function is well-behaved, and an optimal stationary

policy will exist.24

Structural properties

To characterize the structure of the optimal policy, we make

two additional assumptions. First, we assume that the yield

decreases as the machine condition gets worse. Second, we

assume that as the machine deteriorates, it is more likely to

go to a worse state than a better state. These assumptions

can be written as

(A1) bi is non-increasing in i.
(A2) For each l,

PM
j¼l pij is non-decreasing in i.

To further describe the structure of the optimal policy, we

need the following lemma:

Lemma 3.1 The single-period value function V1(i, x)

(a) is non-decreasing in i,

(b) is convex, and

(c) has a unique bounded solution.

Proof By assumption (A1), bi is non-increasing in i. In
other words, the yield decreases as the machine condition

gets worse. Clearly, it is impossible to achieve lower costs

when the yield is lower. Therefore, we may conclude that

V1(i, x) is non-decreasing in i. The term in square brackets in

Equation (2) represents the total backlog and holding costs.

Since these costs are linear, this element of the cost function

is convex (in a discrete sense), and the convexity is preserved

under expectation.24 Since V1(i, x) is convex and all costs are

bounded, Equation (2) will have a unique bounded

solution.

Define a(i, x) as the smallest repair action that minimizes

the right-hand side of (2) when the system is in state (i, x);

that is, a(i, x)¼ 1 if the equipment is repaired, and a(i, x)¼ 0
otherwise. Define q(i, x) as the smallest production quantity

that minimizes the right-hand side of (2) when the system is

in state (i, x). The next proposition states that a production

threshold exists; that is, there is an inventory level below

which the optimal production quantity will be greater than

zero. However, the optimal production quantity is not

monotone with respect to the machine state.

Proposition 3.1 There exists an inventory level x̂ such that if

q(i, x̂)40, then q(i, x)40 for all xpx̂ and q(i, x)¼ 0 for all
x4x̂.

Proof The result follows from the convexity of V1(i, x). By

definition, q(i, x̂)40 implies that it is preferable to raise the
inventory level than to produce nothing. Then clearly it will

be preferable for any xpx̂, so q(i, x)40 for all xpx̂.

Proposition 3.2 The optimal production quantity, q(i, x) is

not monotone with respect to the machine state.

Proof Assume that q(i, x) is non-decreasing in i; that is, the

input quantity will increase as the machine condition gets

worse, so we would have q(i, x)pq(iþ 1, x) for i¼ 0,
1,y,M�1.
However, if a(i, x)¼ 0 and a(iþ 1, x)¼ 1, then q(iþ 1,

x)¼ q(0, x), since the machine is returned to state 0. Since
q(iþ 1, x)¼ q(0, x)pq(i, x), we have a contradiction.

Figure 1 illustrates the meaning of Proposition 3.2 by

plotting values of V1(i, x) for different input quantities. As

shown, q(0, x)¼ q0*oq1
*¼ q(1, x). However, q(2, x)¼ q0* as

well, demonstrating that the production quantity is not

monotone with respect to the machine state.

The following proposition states that a repair threshold

exists and that the threshold increases as the inventory level

increases. In other words, we will wait to repair the machine

if there is sufficient inventory on hand.

Proposition 3.3 There exists a machine state ı̂ such that if

a(ı̂, x)¼ 1, then a(i, x)¼ 1 for all iXı̂ and a(i, x)¼ 0 for all
ioı̂. Furthermore, a(i, x) is non-increasing in x.

Proof Suppose that it is optimal to repair in state (i, x),

that is, a(i, x)¼ 1. From (2) this means that Rþ
V1(0, x)pV1(i, x). Since V1(i, x) is non-decreasing in i, this

must also mean that RþV1(0, x)pV1(iþ 1, x). Thus, repair
will be optimal in state iþ 1 and any greater state as well.
Similarly, suppose that it is optimal not to repair in state

(i, x), that is, a(i, x)¼ 0. This implies that V1(i, x)pRþV1(0,
x). Now suppose that it is optimal to repair in state (i, xþ 1),
that is, a(i, xþ 1)¼ 1. This implies that V1(i, xþ 1)¼
RþV1(0, xþ 1). Clearly, one would not repair unless
q(i, xþ 1)40. By Proposition 3.1, if q(i, xþ 1)40, then
q(i, x)40. Furthermore, the convexity of V1(  ) implies that

Figure 1 Sample plot of V1(i, x) as a function of input
quantity.
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q(i, x)Xq(i, xþ 1). But the only incentive to repair in state (i,
xþ 1) is to achieve an expected output level greater than that
possible without repairing. In other words, one would repair

the machine only when the repair cost is outweighed by the

expected increase in output. But if this were the case for

xþ 1, then it would also be true for x and any lower
inventory level. Thus, we have a contradiction.

Infinite-horizon problem

The infinite-horizon equivalent of (1) is written as

Vði; xÞ ¼ inf
ða;qÞ

RðaÞ þ cq
X1
d¼0

Xq
k¼0

"
bðd � x� kÞþ

(

þ hðx þ k� dÞþ

þ a
XM
j¼0

p
aq
ij Vðj; x þ k� dÞ

#


fai ðkjqÞxðdÞ
)

ð3Þ

First, we must show that a solution exists.

Lemma 3.2 V(i, x)¼ limn-NVn(i, x) exists for every (i, x).

Proof Let p be any policy and let Wp(i, x) denote the

expected present value of using this policy when the initial

state is (i, x). In other words, Wp(i, x) is a return function

analogous to (3) without the ‘inf’ function. We will apply

Theorem 8–13 in Heyman and Sobel,24 which states that if

Wp(i, x)oN for all (i, x), then V(i, x)¼ limn-NVn(i, x)

exists for every (i, x). We can choose, for example, a

policy that repairs the machine each period and inputs a

quantity equal to the demand from the previous period;

that is, an¼ 1 and qn¼min{Q, Dnþ 1} for each period n.
Clearly, the single-period costs are bounded, and since ao1,
we have Wp(i, x)oN for all (i, x), and the result

follows.

Now we can explore the structure of the infinite horizon

problem.

Proposition 3.4 V(i, x) is non-decreasing in i.

Proof By Lemma 3.1, V1(i, x) is non-decreasing in i. Now

suppose that Vn�1(i, x) is non-decreasing in i. By assumption

(A2), Sj¼ l
M pij is non-decreasing in i for each l. This implies

that Sj¼ 0
M pij f( j) is non-decreasing for any non-decreasing

function f(  ).25 By induction, we can conclude that Vn(i, x) is
also non-decreasing in i. By Lemma 3.2, Vn(i, x)-V(i, x) as

n-N, so V(i, x) is also non-decreasing in i.

Proposition 3.5 For the infinite-horizon problem, there exists

a machine state ı̂ such that if a(ı̂, x)¼ 1, then a(i, x)¼ 1 for
all iXı̂ and a(i, x)¼ 0 for all ioı̂.

Proof The proof follows the same reasoning as the proof of

Proposition 3.3.

Any standard MDP solution method may be used to solve

(3) for the optimal policy. We use a straightforward policy

improvement algorithm, the details of which are described in

Appendix A.

Sequential approach

Maintenance and production problems have traditionally

been treated independently. We use the phrase sequential

approach to refer to the process of solving the two problems

separately rather than simultaneously. First, the mainte-

nance schedule is determined by finding the point (machine

state) at which it is cheaper, in terms of operating costs, to

repair the machine than not to repair the machine.

In the long run, we would expect to produce enough each

period to meet the expected demand. Since the yield is bi
when the machine is in state i, an input quantity of E[D]/bi
would be needed to attain an output quantity of E[D], the

expected demand. So the expected operating costs for state i

would be C(i)�c(E[D]/bi), and C(i) is non-decreasing in i.
The problem is reduced to an elementary equipment

maintenance model such as that proposed by Derman.25

The objective at this stage is to determine the repair

threshold, that is, the machine state at which it becomes

preferable to stop and repair the machine rather than

continue producing. The threshold can be easily determined

using any standard MDP solution method. More details are

discussed in Appendix B.

The maintenance schedule tells us the repair action for

each machine state, denoted as ai, and thus fixes the machine

state transitions. Now the production quantity can be

determined by solving (3) with the modification that the

repair action is specified by ai:

Vði; xÞ ¼ inf
q

RðaiÞ þ cq þ
X1
d¼0

Xq
k¼0

"
bðd � x� kÞþ

(

þ hðx þ k� dÞþ

þ a
XM
j¼0

p
aiq
ij Vðj; x þ k� dÞ

#


faii ðkjqÞxðdÞ
)

ð4Þ

This cost function is very similar to (3) and can be solved

using the same policy improvement algorithm mentioned

above and described in detail in Appendix A.

Clearly, the simultaneous approach will be better than the

sequential approach, but the question of interest is: how
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much better? In the next section, we attempt to answer this

question.

Numerical results

In both academic and industrial arenas, the problems of

maintenance scheduling and lotsizing have traditionally been

treated independently. The primary question of interest is:

how much of a difference will it make to use information

about equipment condition and yield to solve simultaneously

these two problems? Thus, our goal is to compare the

simultaneous approach outlined in the previous section with

the traditional, sequential approach.

Overview of problems

We examine a single-stage, single-machine system that

produces a single product. The machine has five states,

iA{0, 1, 2, 3, 4}, where state 0 indicates the best state and
state 4 indicates the worst state. To get a sense of how the

results are influenced by the different parameter values, we

treat each parameter as a ‘factor’ in an experimental design

and test each at different ‘levels’. Each factor is tested at

three levels except for the demand probability function,

which is tested at four levels. A ‘full factorial’ design yields a

total of 26244 test problems.

Table 1 reports each factor and level tested. The

equipment deterioration ‘rate’ listed in Table 1 refers to

the likelihood of the machine state getting worse; a fast rate

means that the probability of going to a worse state is high,

and a low rate means that the probability of going to a worse

state is low. Table 2 reports the actual machine state

transition probabilities used. The yield values—low, med-

ium, and high—are listed in Table 3. Four different demand

distributions are tested: deterministic, binomial, (discrete)

uniform, and geometric. The distribution parameters are set

for a given value of E[D] in such a way that the variance

increases going from deterministic to geometric. Specifically,

the coefficient of variation for deterministic demand is 0, for

binomial demand is approximately 0.25, for uniform

demand is approximately 0.6, and for geometric demand is

approximately 1. (The specific demand parameter values

used are reported in Appendix C.) For all problems, the

production cost is c¼ 1 per unit of input.
The optimal policies are determined for the simultaneous

and sequential approaches using a simple policy improve-

ment algorithm to solve the optimality equations, (3) and

(4), respectively. This solution procedure, the details of

which are described in Appendix A, is an iterative process,

and one must specify at what point to terminate it. For all

the problems in our study, the search for an optimal policy is

stopped when the cost for a particular state changes by less

than 0.01% from one iteration to the next. In addition, the

inventory level could theoretically become infinitely large or

small. To address this issue, we truncate the state space at a

point that is well beyond the maximum probable change in

Table 1 Summary of factors and levels for test problems

Factor Description Factor values

a Discount factor 0.5, 0.7, 0.9
R Repair cost 20, 40, 80
h Holding cost per unit per period 0.5, 1, 2
b Backlog cost per unit per period 5, 10, 20
Q Maximum production quantity 12, 15, 20
[pij] Equipment deterioration rate Slow, med., fast
[bi] Yield values Low, med., high
E[D] Mean demand per period 6, 9, 12
x (d) Demand probability function Deterministic, binomial, uniform, geometric

Table 2 Equipment deterioration probabilities (pij)

Level Matrix Level Matrix Level Matrix

Slow

:9 :1 0 0 0
0 :9 :1 0 0
0 0 :9 :1 0
0 0 0 :9 :1
0 0 0 0 1

2
66664

3
77775 Med.

:5 :5 0 0 0
0 :5 :5 0 0
0 0 :5 :5 0
0 0 0 :5 :5
0 0 0 0 1

2
66664

3
77775 Fast

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

2
66664

3
77775
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inventory level. Specifically, when E[D]¼ 6, the state space is
truncated so that xA[�125, 125] units; when E[D]¼ 9, the
state space is truncated so that xA[�200, 200] units: and
when E[D]¼ 12, the state space is truncated so that
xA[�250, 250] units. It is highly unlikely that the inventory
level would reach these extremes under normal conditions.

This type of truncation is standard and has been shown to

have a minimal impact on the solution values.26,27

Results

Table 4 reports the results of the numerical problems. The

minimum expected discounted cost of the simultaneous

approach is an average of approximately 18% less than that

of the sequential approach, with a maximum of 99% and a

minimum of 0%. The 75th percentile (not shown in the

table) is approximately 27%; this means that for one-quarter

of the cases studied, the simultaneous approach results in a

cost savings of more than 27% as compared to the

sequential approach.

Examining the numbers in Table 4 we see that the results

are not substantially different for the three discount factors

tested. However, the cost penalty for the sequential method

increases dramatically as the machine repair cost increases.

When the repair cost is high, the sequential method will set

the repair threshold at a high level of deterioration, and this

will limit the options available for the production decision

and will make it difficult to raise the inventory level quickly.

Table 3 Yield values for each machine state

Machine state

Level 0 1 2 3 4

Low 1.0 0.25 0.125 0.0625 0.0
Med. 1.0 0.50 0.25 0.125 0.0
High 1.0 0.75 0.50 0.25 0.0

Table 4 Results of test problems

Total cost

All problems Sequential* Simultaneousw Cost penaltyz

Average 374.6 265.1 18.0
Minimum 34.7 3.7 0.0
Maximum 9396.1 3013.5 99.3

Factor Level
Discount factor 0.5 153.7 121.5 18.9

0.7 241.6 186.2 18.4
0.9 728.7 487.7 16.8

Repair cost 20 251.1 220.4 10.4
40 351.4 256.0 17.5
80 521.3 319.0 26.1

Holding cost 0.5 356.4 246.5 18.8
1 371.6 262.1 18.1
2 395.9 286.8 17.1

Backlog cost 5 243.0 201.3 12.1
10 344.3 252.9 17.7
20 536.5 341.1 24.4

Maximum production 12 560.9 366.0 20.5
15 340.4 242.4 18.8
20 222.5 187.0 14.9

Deterioration rate Slow 287.5 222.0 16.5
Med. 380.7 265.4 18.9
Fast 455.7 308.0 18.7

Yield Low 343.7 275.8 11.6
Med. 403.0 267.3 21.2
High 377.1 252.4 21.3

Mean demand 6 190.2 151.9 18.6
9 327.6 233.5 18.1
12 606.1 410.1 17.4

Demand distribution Deterministic 307.3 204.2 20.0
Binomial 342.2 228.4 19.0
Uniform 412.0 293.8 17.5
Geometric 437.0 334.2 15.7

*Minimum discounted cost using sequential approach averaged over all states for the given factor level.
wMinimum discounted cost using simultaneous approach averaged over all states for the given factor level.
zPercentage cost penalty of sequential approach over simultaneous approach for the given factor level (averaged over all states).
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The results are essentially the same for all three holding

cost levels tested. This result makes sense given that the

holding costs are small compared to other costs in the

model. In contrast, the backlog costs are fairly substantial,

and changes in this factor result in major differences in total

cost. Intuitively, this result makes sense because we would

expect a sub-optimal maintenance policy to hinder our

ability to reduce inventory backlogs and thus would expect

the penalty to be higher when the backlog cost is high.

The production capacity has a substantial effect on the

cost differences. As the production capacity increases, the

penalty decreases for the sequential method. Apparently,

the additional production capacity increases the ability of

the sequential approach to fine-tune production levels. The

increased flexibility is particularly valuable given that the

backlog costs are very high as compared to the production

and holding costs.

The penalty for using the sequential method generally

increases as the equipment deterioration rate increases,

although not significantly. Other things being equal, we

would expect the maintenance policy determined using the

sequential method to repair earlier when the probability of

moving to a worse state is very high. In other words, when

the deterioration rate is high, the sequential method will

result in repairing the machine earlier than is necessary,

resulting in higher costs.

As the product yield increases, the difference between the

simultaneous and sequential methods increases. At the low

yield level, the change in yield from state to state is quite

large. This large spread makes it easier for the sequential

method to determine the ‘correct’ maintenance policy, that

is, a policy closer to that determined by the simultaneous

method. When the yield values are not as spread out (for the

medium and high levels), the difference between the

sequential and simultaneous methods increases.

The gains made by the simultaneous approach are

relatively insensitive to the average demand level. As the

mean demand increases, the penalty for using the sequential

approach decreases, but only very slightly. The demand

distribution, however, appears to have a much larger impact.

The distributions are listed in increasing order of variance,

and it is somewhat surprising at first glance to see that the

biggest improvement is associated with the lowest variance:

deterministic demand. This result makes more sense when

one considers that a higher variance means that the demand

distribution is more spread out, and hence that the

maximum demand level is higher. Given that the production

capacity is fixed, the opportunity for improvement by

solving the problems simultaneously is decreased.

As indicated earlier, the simultaneous approach is

guaranteed to be better than the sequential approach.

However, it is interesting to see how much better. Analysis

of more than 26000 test problems over a wide range of

parameter values indicates that the improvement provided

by the simultaneous approach is substantial. This demon-

strates that understanding the relationship between equip-

ment condition and product quality, and incorporating this

kind of information in maintenance scheduling and produc-

tion decisions can have a significant impact on costs.

Conclusions and future directions

Improving quality and reducing costs are important goals in

virtually every organization. This paper has explored the

relationship between yield, equipment condition, and

production management, accounting for the fact that

equipment condition plays an important role in product

quality and thus a firm’s ability to satisfy customer demand.

We formulated a Markov decision process model of a single-

stage production system in which equipment condition

affects the product yield. The decision maker must choose

the equipment maintenance schedule as well as the quantity

to produce in a way that minimizes the sum of production,

backorder, and holding costs. We found that under some

reasonable conditions regarding the yield and equipment

deterioration, a maintenance threshold exists and a produc-

tion threshold exists, but the production threshold is not

monotone with respect to the machine state. That is, the

optimal policy will not necessarily input more units in a

worse state, even though the expected yield is decreasing.

Numerical problems were used to compare the proposed

policy to a sequential approach, which solves the maintenance

and production problems independently. The results of more

than 26000 test problems show that using the sequential

approach results in an average cost that is approximately 18%

greater than that of the simultaneous approach.

Until recently, researchers and practitioners alike have

discounted or ignored the interaction between equipment

condition, product quality, and inventory control. This

paper demonstrates that substantial improvements can be

realized by using equipment condition and yield information

for maintenance and production decisions. While this work

represents an important first step toward addressing an issue

that has received relatively little attention, several enhance-

ments are possible. First, treating the equipment repair time

as a random variable rather than a fixed value would be of

interest. A second enhancement would be to include multiple

product types, each with a different yield distribution.

Finally, extending the model to a multi-stage system would

be of interest. Future research will be directed towards these

extensions.
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Appendix A: policy improvement algorithm

Several methods are available to solve dynamic program-

ming recursions such as (3). The books by Heyman and

Sobel24 and Puterman26 provide detailed explanations of

different approaches and explain the advantages and

disadvantages of each. We use a simple policy improve-

ment algorithm: this technique is not the most efficient

computationally, but it is very robust, easy to understand,

and easy to implement. In a nutshell, the algorithm tries

all possible actions for all possible states and picks the

best action. For a single iteration of the algorithm, one

steps through each state (i, x) and tests each action (a, q),

retaining the action that minimizes the costs. This process

is repeated until the value function converges, that is,

does not change significantly from one iteration to the

next.

A formal statement of the policy improvement algorithm

is presented below. Define p(i, x) as a decision rule that
specifies the action (a, q) to be taken when the process

is in state (i, x). Let pn refer to the policy tested on
the nth iteration, and let Wn refer to the cost incurred

from using policy pn. The value of Wn is computed via

(3) using the action specified by pn (without the ‘inf’
operator).

Policy improvement algorithm

0: Choose any stationary policy and label it p1.
1: For each state (i, x)AS, compute the cost function

vector for policy pn: [Wn(i, x)].

2: Define An as the set of all actions except the action

specified by the current policy: An¼A\{pn(i, x)}. For
each state (i, x)AS, compute the difference between the

cost for the action specified by policy pn and the minimal
cost for actions in An:

Dnði; xÞ ¼ min
ða;qÞ2An

(
RðaÞ þ cq

þ
X1
d¼0

Xq
k¼0

"
bðd � x� kÞþ

þ hðx þ k� dÞþ

þ a
XM
j¼0

p
aq
ij Wnðj; x þ k� dÞ

#


fai ðkjqÞxðdÞ
)

�Wnði; xÞ

ð5Þ

If Dn(i, x)X0, then pn(i, x) is the cost-minimizing
action, so let pnþ 1(i, x)¼ pn(i, x). If Dn(i, x)o0,
then let pnþ 1(i, x) be the smallest action that minimizes
(5).

3: If pnþ 1(i, x)¼pn(i, x) for all (i, x), then stop: pn is
optimal. Otherwise, replace n with nþ 1 and return to
Step 1.
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Appendix B: maintenance policy for the sequential

approach

The first step in the sequential approach is to determine a

maintenance policy, that is, to determine the machine states

in which it is cheaper to stop production and repair the

machine than to continue producing. This is accomplished

using an elementary maintenance model such as that

proposed by Derman.25

As stated in the Sequential approach section, C(i) denotes

the cost to operate the machine when it is in state i, and

C(i)�c(E[D]/bi). The objective for this sub-problem is to
choose the action—‘repair’ or ‘do not repair’—which

minimizes the sum of discounted costs. Define V0(i) as the

minimal expected discounted cost function when the initial

machine state is i. Since repairing the machine returns it

to state 0 with probability one, the cost function can be

written as

V 0ðiÞ ¼min R þ Cð0Þ þ a
XM
j¼0

p0jV
0ð0Þ;

(

CðiÞ þ a
XM
j¼0

pijV
0ðjÞ

)
;

ðB1Þ

where the terms within the braces refer to the costs

associated with repairing and not repairing, respectively.

This dynamic programming recursion is solved using the

same policy improvement method described in Appendix A

with the appropriate modifications of cost functions, states,

and actions. The optimal policy tells us whether or not to

repair in each state and fixes the machine state transitions for

the second step in the sequential approach in which the

production quantity is determined.

Appendix C: demand distribution parameters

Four demand probability functions are tested in the

Numerical results section: deterministic, binomial, uniform,

and geometric. Figure 2 illustrates what the latter three

probability functions look like for E[D]¼ 6. (Note that the
actual functions are discrete, but they have been sketched as

continuous functions here for illustrative purposes.) The

specific parameter values used for each distribution are

reported in Table 5.
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Figure 2 Illustration of different demand probability functions
(E[D]¼ 6).

Table 5 Parameter values for demand distributions tested

Distribution (parameters) Parameter values Mean CV*

Deterministic (none) n/a 6 0
n/a 9 0
n/a 12 0

Binomial (n, p) n¼ 12, p¼ 0.5 6 0.29
n¼ 18, p¼ 0.5 9 0.24
n¼ 24, p¼ 0.5 12 0.20

Uniform (a, b) a¼ 0, b¼ 12 6 0.62
a¼ 0, b¼ 18 9 0.61
a¼ 0, b¼ 24 12 0.60

Geometric (p)w p¼ 1/7 6 1.08
p¼ 1/10 9 1.05
p¼ 1/13 12 1.04

*Coefficient of variation, which is equal to the standard deviation
divided by the mean.
wThere is no upper bound on the range of the geometric distribution,
and thus it must be truncated and normalized for numerical solutions.
We truncate the distribution at 4E[D], which represents about 98% of
the distribution.
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