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Outline 

n  Motivation and Objective  
– Delamination/debonding problem in multi-layer fiberglass-

concrete systems  

n  Distant Inspection – Acoustic-Laser NDE Technique 

n  Experimental Result 

n  Summary 



Motivation and Objective 

n  Deterioration and degradation of civil infrastructure 



Motivation and Objective 
n  Sudden failures of civil infrastructure systems 

¨  Significant impacts  
n  EX: I-35 Highway Bridge Collapse, Minneapolis, Minnesota 

(6:05pm, Wed., Aug. 1, 2007) 

(Source: Security camera by the Army Corps of Engineers)  (Source: www.gettyimages.com)  



Motivation and Objective 

n  Deterioration/degradation is inevitable, but sudden failure must be 
prevented. 

n  Among various strengthening and repairing techniques, externally-
wrapped strengthening technique provides a rapid and effective 
solution. 

(Source: Fyfe Co. LLC, 2005) 

n  After strengthening, a multi-layer fiberglass-concrete system is 
formed. à Less ductile than the original reinforced concrete system 



FRP reinforcement bonded to soffit 

Debonding from laminate end 

Anchorage with bolts 

Debonding from flexural- 
shear crack 

Motivation and Objective 
n  Delamination/debonding in a strengthened reinforced concrete beam: 

FRP(fiber reinforced 
polymer/plastic) 



Motivation and Objective 
n  Delamination/debonding in a strengthened reinforced concrete column: 

a)  Bond delamination between plies  b) Overlap joint debonding 

[Au (2001)] 



Motivation and Objective 

n  Strengthening techniques are used –  
•  For new constructions to upgrade their design capacity 
•  For damaged structures to restore their design capacity 

n  Inspection needs: 
n  Need to determine the level of strengthening  
n  Need to evaluate the quality of strengthening construction 
n  Need to monitor the long-term performance of the strengthened system 

n  Objective:  
n  To develop a distant/standoff technique for the inspection of 

delamination/debonding  



Acoustic-Laser NDE 

n  Inspection scheme:  
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Acoustic-Laser NDE 

n  Proposed acoustic-laser NDE technique 
n  Is a standoff inspection technique 
n  Has a high powered parametric acoustic array (PAA) that can 

excite the structure from ranges exceeding 30 meters  
n  Has a laser vibrometer that collects the surface dynamic 

signature of the multi-layer structure 

n  Principle: 
n  Dynamic signature of an intact multi-layer system is different 

from the one of an damaged multi-layer system. 

 



Acoustic-Laser NDE 

n  Simplified models of delamination and concrete cracking: 
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Acoustic-Laser NDE 

n  Theoretical basis:  
n  Difference in natural frequencies of the damaged and intact 

regions 
n  Governing equation of an intact region – 2D beam model: 

n  Governing equation of a damaged region (clamped beam): 
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where  E = Young’s modulus, I = moment of the inertia, ρ = density of the material 
(fiberglass), A = cross sectional area, y(x,t) = transverse displacement of the beam at 
position x and time t, and k = distributed stiffness coefficient characterizing the 
connection between FRP and concrete. 



Acoustic-Laser NDE 

n  Natural frequencies of the intact and damaged regions: 
n  Intact –  

 where Mi = the generalized mass of the i-th mode, and φi(x) = shape function. 
n  Damaged (with void) –  

n  The Rayleigh wave over a finite length void can be described in 
terms of two harmonic waves traveling in opposite directions. 
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where A and B are complex amplitudes. 



Acoustic-Laser NDE 
n  Parametric acoustic array (PAA): 

[Courtesy of MIT Lincoln Laboratory] 
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Acoustic-Laser NDE 
n  Acoustic radiation pattern of the developed PAA:  
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Acoustic-Laser NDE 

n  PAA radiation patterns at 7 kHz and 26.3 kHz: 

à Acoustic waves by PAA is focused. 
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Acoustic-Laser NDE 

n  Acoustic radiation patterns at different frequencies: 
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Acoustic-Laser NDE 

n  Acoustic power from PAA: 
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Experimental Result 

n  Specimen description 

§  Concrete mix ratio = water : cement : sand : aggregate = 0.45 : 1 : 2.52 : 3.21 
§  Glass FRP (GFRP) mix ratio = epoxy : glass fiber = 0.645 : 0.355  
§  GFRP type = Tyfo SHE-51A by Fyfe 
§  Epoxy = Tyfo S epoxy by Fyfe 
§  GFRP sheet thickness = 0.25 cm (0.1 in) 
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Experimental Result 

n  Low frequency acoustic response using a loudspeaker 
source: 
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(Measurements were made at a distance of 30 m in an open area in Lexington, MA.) 



Experimental Result 

n  High frequency acoustic response using the PAA: 
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à Using a sound speed of 340 m/s shows that the ½ wavelength of the 
resonance is approximately 2 inches which is the width of the large void. 



Experimental Result 

n  High frequency acoustic response: 
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Experimental Result 

n  Approximate 3D solution: 
– Uniform circular plate with fixed edge supports in free vibration 
 
 
 
where                         = flexural rigidity of the plate, E = Young’s modulus, h = 

thickness of the plate,  ν = Poisson’s ratio, ρ = density of the material,                 
= transverse displacement in cylindrical coordinate as the function of spatial 
variables  and time t. (E = 21.5 psi (148 GPa); ρ = 1.4 lb/in3 (1.5 kg/m3)) 

   is found from the frequency equation; a = the radius of the circular plate, λ = 
eigenvalue of the frequency equation. 
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= Bessel function of the first kind 

= modified Bessel function of the first kind 



Experimental Result 

n  Approximate 3D solution: 
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à Difference is attributed to i) non-perfectly shape of the delamination, and  
    ii) the variation in boundary condition.  



Summary 

n  The proposed acoustic-laser technique is capable of remotely 
exciting a fiberglass-concrete system and collecting the surface 
dynamic signature from the system. 

n  Surface dynamic signature of the intact (solid) region in a multi-layer 
fiberglass-concrete system is different from the one of the 
delaminated (void) region. à A database relating surface dynamic 
signature and delamination/debonding characteristics can be 
established. 

n  High velocity measurements are remotely observed at the 
debonding location and at the resonant frequency relating to the 
debonding geometry.  

n  Possible use for detecting surface concrete cracking and steel 
corrosion 



Thank you for your attention. 
 

Questions? 


