

Structural Engineering Research Group (SERG) Summer Seminar Series #15 August 22, 2014

Image Processing using Matlab

Tzuyang Yu

Associate Professor, Ph.D. Structural Engineering Research Group (SERG) Department of Civil and Environmental Engineering The University of Massachusetts Lowell

SERG

Outline

- Introduction
- What is Matlab?
- Matlab Basics
- Image Processing in Matlab
- Summary
- References

Introduction

- Image Processing generally involves extraction of useful information (qualitative and/or quantitative) from an image.
- This useful information may be the dimensions of an engineering component, size of diagnosed tumor, a threedimensional rendering of an unborn baby, spatial distribution (e.g., length, shape) of a surface crack, area of a corroded steel rebar, or volume of a crumbled concrete.

What is Matlab?

- Matlab is an abbreviation of Matrix Laboratory by MathWork®.
- Scientific and engineering standard for mathematical processing and programming → Large user group around the world
- In Matlab, everything is represented in the form of arrays or matrices.à\u00f6Linear Algebra
- Code developed in Matlab can be converted into C, C++ or Visual C++. → Portability, flexibility
- Matlab codes may be called as ActiveX Object from higher level languages like Visual Basic. → Expendability

Matlab Basics

- Matrix Declaration:
 - Null Matrix \rightarrow *null*
 - Matrix with Ones \rightarrow ones(m, n)
 - Identity Matrix $\rightarrow eye(n)$
 - Random Matrix \rightarrow randn(n)
- Matrix Arithmetic:
 - Addition
 - Subtraction
 - Multiplication
 - Division

Matlab Basics

- Matrix manipulation:
 - Addressing of individual element $\rightarrow A(i, j)$
 - Complete row addressing $\rightarrow A(:, n)$
 - Complete column addressing $\rightarrow A(n, :)$
 - Transpose $\rightarrow A = B'$
 - Flip matrices \rightarrow *flipIr* and *flipud*
- Saving and loading data → save and load
- Concept of function and m-files
- Concept of path \rightarrow cd, pwd

Matlab Basics

- Useful commands:
 - whos
 - help → Learn how to use help to teach yourself Matlab commands.
 - clear
 - path
 - *cd*
 - dir
 - Iookfor

- Images can be conveniently represented as matrices in Matlab.
- Images can be conveniently represented as matrices (2D or 3D) in Matlab.
- The matrix may simply be *m x n* form or it may be 3D array or it may be an indexed matrix, depending upon image type.
- Image processing is carried out by matrix calculation or matrix manipulation.
- Image can be read by using *imread* command, displayed with *imshow* command, and saved with *imwrite* command.

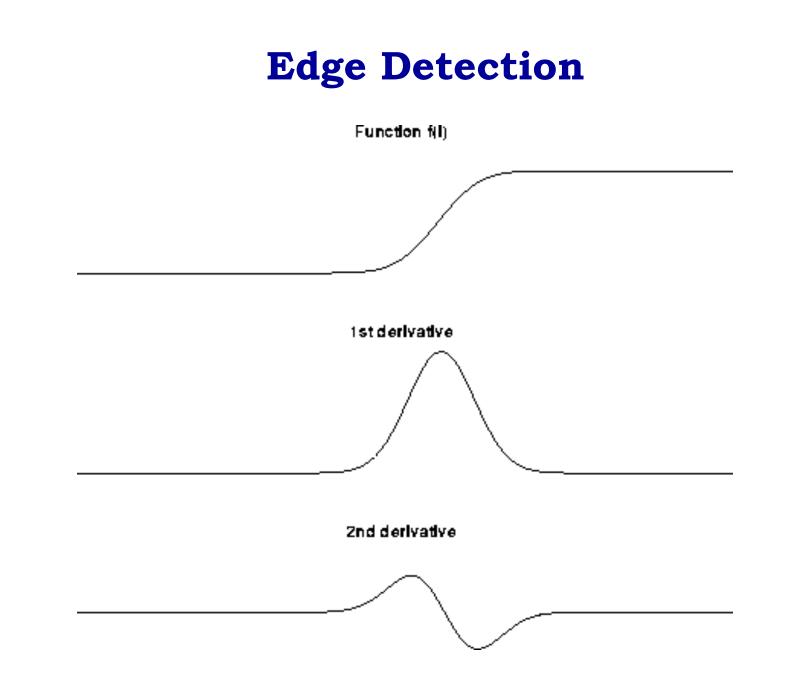
- Generally speadking, images can be of three types; black & white (BW), grey scale, and colored (Red-Green-Blue or RGB).
- In Matlab, there are the following types:
 - Black & White images are called binary images, containing 1 for white and 0 for black.
 - Grey scale images are called intensity images, containing numbers in the range of 0 to 255 or 0 to 1.
 - Colored images may be represented as RGB Image or Indexed Image.

- In RGB images there exist three indexed images.
- First image contains all the red portion of the image, second green and third contains the blue portion. →
 Therefore for a 640 x 480 sized image the matrix will be 640 x 480 x 3.
- An alternate method of colored image representation is Indexed Image. → Each color in the image is given an index number and in image matrix each color is represented as an index number.
- Map matrix contains the database of which index number belongs to which color.

- Read in an image.
- Validates the graphic format.

(bmp, hdf, jpeg, pcx, png, tiff, xwd)

- Store it in an array.
 - clear, close all
 I = imread(`pout.tif`);
 [X, map] = imread(`pout.tif');


- RGB Image to Intensity Image (*rgb2gray*)
- RGB Image to Indexed Image (rgb2ind)
- RGB Image to Binary Image (*im2bw*)
- Indexed Image to RGB Image (*ind2rgb*)
- Indexed Image to Intensity Image (*ind2gray*)
- Indexed Image to Binary Image (*im2bw*)
- Intensity Image to Indexed Image (gray2ind)
- Intensity Image to Binary Image (*im2bw*)
- Intensity Image to RGB Image (gray2ind, ind2rgb)

- There are a number of ways to get statistical information about data in the image. → Image histogram is on such way.
- An image histogram is a chart that shows the distribution of intensities in an image.
- Each color level is represented as a point on x-axis and on y-axis is the number instances a color level repeats in the image.
- Histogram may be view with *imhist* command.
- Sometimes all the important information in an image lies only in a small region of colors, hence it usually is difficult to extract information out of that image.
- To balance the brightness level, one can perform histogram equalization.

- In image processing useful pixels in the image are separated from the rest by image segmentation.
- Brightness threshold and edge detection are the two most common image segregation techniques.
- In brightness threshold, all the pixels brighter than a specified brightness level are taken as 1 and rest are left 0.
 → This leads to a binary image with useful image as 1 and unwanted as 0.
- In edge detection special algorithms are used to detect edges of objects in the image. → edge

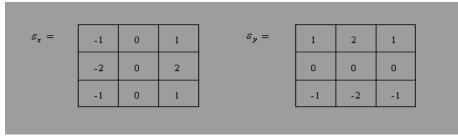
Edge Detection

- Edge detection extract edges of objects from an image.
- There are a number of algorithms for this, but these may be classified as derivative based or gradient based.
- In derivative based edge detection the algorithm takes first or second derivative on each pixel in the image. → In case of first derivative at the edge of the image there is a rapid change of intensity.
- While in case of second derivative there is a zero pixel value, termed zero crossing.
- In gradient based edge detection a gradient of consecutive pixels is taken in x and y direction.

Edge Detection

- Taking derivative on each and every pixel of the image consumes a lot of computer resources and is not practical.
 → Typically an operation called kernel operation is carried out.
- A kernel is a small matrix sliding over the image matrix containing coefficients which are multiplied to corresponding image matrix elements and their sum is put at the target pixel.

Sobel Edge Detection


In sobel following formulas are applied on each pixel (*i*,*j*) in the image and two matrices S_x and S_y are obtained:

$$S_x = (a_2 + ca_3 + a_4) - (a_0 + ca_7 + a_6)$$

$$S_y = (a_0 + ca_1 + a_2) - (a_6 + ca_5 + a_4)$$

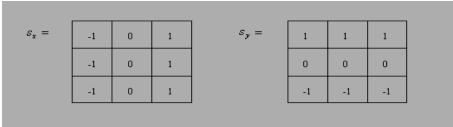
$$C = 2$$

 Alternatively this can be done by applying following two kernels:

• The resultant matrix is then obtained by taking the square root of the sum of the squares of S_x and S_y , as follows:

$$M(i,j) = (S_x^2 + S_y^2)^{1/2}$$
18

Prewitt Edge Detection


■ In *Prewitt* everything is same but *C*=1:

$$S_x = (a_2 + ca_3 + a_4) - (a_0 + ca_7 + a_6)$$

$$S_y = (a_0 + ca_1 + a_2) - (a_6 + ca_5 + a_4)$$

$$C = 1$$

Alternatively this can be done by applying following two kernels:

• The resultant matrix is then obtained by taking the square root of the sum of the squares of S_x and S_y , as follows:

$$M(i,j) = (S_x^2 + S_y^2)^{1/2}$$

Morphological Operations

- These are image processing operations done on binary images based on certain morphologies or shapes.
- The value of each pixel in the output is based on the corresponding input pixel and its neighbors.
- By choosing appropriately shaped neighbors one can construct an operation that is sensitive to a certain shape in the input image.

Morphological Operation Skeletonize

- It creates skeleton of an object, by removing pixels on the boundaries but does not allow objects to break apart.
- It is an extremely important operation in image processing as it removes complexities from an image without loosing details.

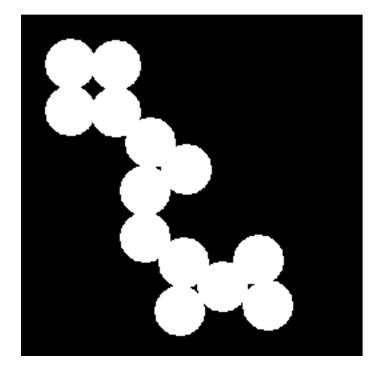
Erosion & Dilation

- These are the most fundamental of binary morphological operations.
- In dilation if any pixel in the input pixel's neighborhood is on, the output pixel is on otherwise off.
- In actual dilation grows the area of the object. Small holes in the object are removed.
- In erosion if every pixel in the input pixel's neighborhood is on the output pixel is on otherwise off
- This in actual works as shrinking the object's area, thus small isolated regions disappear.

Simple Morphological Operations

- imerode Erode image.
- *imclose* Morphologically close image.
- *imopen* Morphologically open image.
- imdilate Dilate image.
- strel Create morphological structuring element (STREL).
- *imread* Read image from graphics file.
- *imwrite* Write image to graphics file.
- imshow Display image.
- *imsubtract* Subtract one image from another or subtract constant from image.
- *imadjust* Adjust image.
- *imcrop* Crop image.

Erosion & Dilation


imdilate


The term watershed refers to a ridge that ... drained by different river systems.

Erosion & Dilation

• imerode

Summary

- Imaging (rendering data into image) is an approach in data visualization. Mathematically, an image is a twodimensional tensor.
- Linear Algebra is the mathematical basis in image processing.
- The objective of image processing is to reveal the physical pattern in the data, not to play with mathematical skills.

References

- Gonzalez, R. C., R. E. Woods, and S. L. Eddins (2009), *Digital Image Processing Using MATLAB*, Gatesmark Publishing, Knoxville, TN.
- Haralick, R. M., and L. G. Shapiro (1992), Computer and Robot Vision, Vol. I, Addison-Wesley, pp. 158-205.
- van den Boomgard, R, and R. van Balen (1992), "Methods for Fast Morphological Image Transforms Using Bitmapped Images," *Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing*, 54 (3), pp. 254-258.