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Background

o Definition

A function is a mapping of single values to single values.

A functional is a mapping of function values to single or function

values. It usually contains single or multiple variables and their
derivatives.

Dirichlet Principle: There exists one stationary ground state for
energy.

Euler’s Equation defines the condition for finding the extrema of
functionals. = An extremal is the maximum or minimum integral
curves of Euler’s equation of a functional.

Calculus of Functionals: Determining the properties of functionals.
Calculus of Variations: Finding the extremals of functionals.



Background

« Single value calculus:

. positive negative
* Functions take extreme values on gradient + " gradient
bounded domain. Necessary condition
. . . . +
for extremum at x,, if fis differentiable:
f’(x0)=0 & maximum
. g y
 Calculus of variations A

y=y(x) + Av(x)

» Test function v(x), which vanishes at
endpoints, used to find extremal:

w(x)=u(x)+ev(x) [ €] =}F(x, w,wx)dx

* Necessary condition for extremal:

dl _
%—O




Maximum and Minimum of Functions

Maximum and minimum

(a) If f(x) is twice continuously differentiable on [x, , X4] i.e.

Nec. condition for a max. (min.) of f(x) at xE[x,,x,] is that F’(x) 0

Suff. condition for a max (min.) of f(x) at x&[x,,x,] are that F’(x)=0 and
F"(x)sO or F"(x)=0
(b) If f(x) over closed domain D. Then nec. and suff. condition for a max. (min.)

of f(x)atx, & D -9 are that i =0 1i=1,2...n andalso

ox

9 ,.
that U ‘x=x is a negative infinite .
ox,0x, '~ 7

x=x0




Maximum and Minimum of Functions

(c) If f(x) on closed domain D
If we want to extremize f{x) subject to the constraints

g(x,K,x)=0 =12k (k<n)

EX: Find the extrema of f(x,y) subject to g(x,y) =0

i) Approach One: Direct differentiation of g(x, y)
dg=gdx+g,dy=0

= dy=—&dx
Ey

To extremize f
df = f.dx+ f.dy=0

= (fx—fyé)dx=0
Ey



Maximum and Minimum of Functions

We have

f&~/g8 =0 ad g=0

to find (x,,y,) which is to extremize f'subjectto g =0

ii) Approach Two: Lagrange Multiplier
Let V(x,»,4) = f(x,y)+Ag(x,y)

—> extrema of v without any constraint

() extrema of f'subjectto g =0

To extremize v

:<

f.g,-/,8.=0

5 0v

L dA

We obtain the same equations by extremizing v. where j is called
the Lagrange Multiplier.



Maximum and Minimum of Functionals

* Functionals are function’s function.

y y(x)

| ‘\/_I
- |
| [ /4
A

M i |3

| |
R

‘ H n(xC) 2 x

« The basic problem in calculus of variations.
Determine y(x)Ec’[x,,x,] such that the functional :

](y(x)) = ijF(x,y(x),y'(x))dx as an extrema

where FEc® over its entire domain, subject to y(x,) =y, , y(x,) =y, at the end
points.



Maximum and Minimum of Functionals

Using integrating by parts of the 2"9 term, it leads to

X1

= [Fy’(xay’y,)n];ci’ B Yo dx

Since  1(x,)=n(x,)=0 and 1(x) is arbitrary,

d , ,
= a[Fyf(x,y,y)]—Fy(x,y,y)=0

Natural B.C’s

F] Lol -
Y% , or/and 0y o,

The above requirements are called national b.c’s.

d : :
[—F,(x,y,y)-F,(x,y,y)lpdx=0 - (1)

(2) (Euler’s Equation)



The Variational Notation

Variations

Imbed u(x) in a “parameter family” of function @(x, &) =u(x)+ £n(x) the
variation of u(x) is defined as

ou = en(x)

The corresponding variation of F, oF to the orderin €is,

since OF =F(x+y+en,y +en)-F(x,v,")
oF oF

=—O0y+
dy Y dy’

and I(u+éen) =fl F(x,u+éen,u +endx =G(¢)
Then ol = 51}] F(x,y,y")dx

=f1 OF(x,y,y")dx

X F oF '
=f (a—5y+ -0y )dx
%\ dy Y%

o0y

10



The Variational Notation

X

aF, 5y]
dy

5 | OF d(aF) 5y +

=Lo 8y_dx 9y’

Thus, a stationary function for a functional is one for which the first variation.

% o

dy

X0

For more general cases

(a) Several dependent variables
EX: I=j;:F(x,y,z;y',Z,)dx
oF d oF oF d oF

Euler's Eq. = -—(—)=0 -—(—)=0
dy dx dy ; dz dx 0z

(b) Several Independent variables

EX: I =ﬂ;{F(x,y,u,ux,uy)dxdy

Euler's Eq. = GF_ J (aF)_i(£)=()

du Ox odu, 0Jy Ou,

11



The Variational Notation

(c) High Orders
EX: [ = f F(x,y,y,y")dx

OF d oF. d* OF
- (—)=0

Euler's Eq. = +
dy dx a d '

~
Variables t =——3 (Causing more equations

Order t =——3 (Causing longer equations
-

12



Constraints and Lagrange Multiplier

Lagrange multiplier

Lagrange multiplier can be used to find the extreme value of a multivariate function f
subjected to the constraints.

EX:
(a) Find the extreme value of [ =f1 F(x,u,v,u_,v )dx

where u(x)=u,  u(x,)=u,
v(x,)=v, v(x,)=v,

and subject to the constraints

G(x,u,v)=0 e (3)
From ST =f)@ oF ~ d ( oF Su+ oF ~ d ( oF vl dr =0
s [l av dx| du, v dxlov || | = e (4)

13



Constraints and Lagrange Multiplier

Because of the constraints, we don'’t get two Euler’s equations.

From

5G=£(5u+§5v=0 = —GV OV = 0u
ou ov G

u

Therefore, Eq. (4) becomes

_ 51=f1{-gv 0F d oF d

v dx
oF d [JF
v dx| dv,

oF
v,

oF
du_

+

ou B dx
oG
ou

u

}5vdx =0

oG
v

oF d GF) I — (6)

ou  dx ou,

The above equations, together with Eq. (3), are used to solve for u, v.

14



Constraints and Lagrange Multiplier

(b) Simple Isoparametric Problem

To extremize | =f‘2 F(x,y,y' v , Subject to the constraint -
) J =f2 G(x, v,y )dx = const.
i) y (%) =yy,Y (X)) =Y,

Take the variation of two-parameter family :  y+0y =y +&n, (x) + &1, (x)
(Where p, (x) and 7, (x) are some equations which satisfy

771()61)=772(x1)=771(x2)=772(x2)=0 )

Then, [(g,¢,) f F(x,y+en +en,,y + 81771 +&,1, )dx
J(&,&,) = G(x V+EN, +E1,, V' + 51771 + &,17, )dx

To base on the Lagrange Multiplier Method, we can get :

19



Constraints and Lagrange Multiplier
0

—(I+AJ =0
851( )£1=£2=0
i(I-'-/‘LJ) & =€ —O=O
o0& e
_ fz oF d aF’ i G d 8G, =0 =12
w |l dy dx\ dy dy dx\ dy

The Euler’s equation becomes

9 (Feac)-2L [i,(FMG)] _0
dy X [ 0y
when G — d aG, =(0 , A is arbitrary numbers.
dy dx\ dy

—> The constraint is trivial, we can ignore / .

16



Applications

Helmholtz Equation

EX: Force vibration of a membrane

i ’;‘)=f(x,y,t) ----------- (7)
ot’ X’

if the forcing function f'is of the form

f(x,y,t)=P(x,y)simn(wt + o)

we may write the steady state displacement « in the form

u=v(x,y)sm(wt+a) e (8)

, v 0%
= (S +—3)+@v+p=0
x> 9’

17



Applications

cz(azv+azv)+a)2v+ Svdxdy =0
S|« Gt oy poveay =

Consider
2
¢’ j;e v Ovdxdy c ﬁe v, Ovdxdy
= c? j;e [(v.0v), —v_ oV, ldxdy =’ L [(vyév)y — vyévy ldxdy
Note that (v .0v) =v_0v+v 0v, (v,0v), =v, 0v+v dv,
vy V. =v 0v y n
=sz+Vy] Vy=vy(5\/ R

Kl = cosHi+sin9j

14 d(v_ov
vy oV OV _avov) (v,0v)
ox dy 0x dy > X




Applications

f n(VeV)da = gﬁ JVen ds = 43 (v_ovcost + vyév sinf)ds

2 2
c ﬁe v Ovdxdy + j;e c’v,, ovdxdy
2 1, 2

=c ﬁvﬁvcos@ds— f REC 6(v.) dxdy

: 1
+c’ gﬁy vyév sin Ods — fR 502(5(vy ) dxdy

= gﬁy c’ (v,cos6+v sin@)ovds — fR%c25[(vx)2 + (vy)z]dxdy

1
+ ﬁe 5602(5 (v*)dxdy + fR Povdxdy =0

= [ avévds [;cz(Vv) —%a)v — Pv]dxdy =0

19



Applications

Hence,
) if v=/(x,»)isgivenon ¥

lLe. Jy=0 on y

then the variational problem

c’ 1
= 5fR [3 (Vv)’ —Eafvz — pvldxdy =0

i) if ﬂ=0 Is given on ¥
on

the variation problem is same as Eq. (10)
e OV o
i) if - =y(s) isgivenon ¥

1 1

= 5[fR {5 c*(Vv)’ —Ea)zv2 - pv%’xa’y —fTCZZ/Jde] =0



Applications

Diffusion Equation
EX:. Steady State Heat Condition

V-(kVT)= f(x,T)

B.C’s: o7
-4t on B
~kn-VT =q, _, B;
—kn-VT =h(T-T,) on B,

Multiply the equation by &7 , and integrate over the domain D. After integrating
by parts, we find the variational problem as follow.

5[f{ KV + [ f(xT)dT}g’

+f qud0+—f WT-T,)’do]=0



Applications

Poisson’s Equation

EX: Torsion of a Prismatic Bar

Vi =-2 in R
Y =0 on Y

where ¥ is the Prandtl stress function and

c Y o i’

o, =4, z a
a Y ox

The variation problem becomes

o[ (D)’ ~ 4y ey}

0

with ¥ =0 onvy .

22



Approximate Methods
I) Method of Weighted Residuals (MWR)

Llu]l]=0 in D

with homogeneous b.c’s in B.
Assume an approximate solution.

u=u, =i21Cz'¢i

where each trial function @, satisfies the b.c’s. The residual is
R =Llu,]

In this method (MWR), C; are chosen such that R is forced to be zero in an
average sense.

ie.<w,R,>=0, j=1.2,..,n

where w; are the weighting functions..
23



Approximate Methods

Il) Galerkin Method
w; are chosen to be the trial functions ¢j hence the trial functions is chosen
as members of a complete set of functions.

Galerkin method force the residual to be zero w.r.t. an orthogonal complete set.

EX: Torsion of a Square Shaft
Vi =-2
w=0 on x=zxa, y==za
i) One — term approximation
Y =c(x’ -a’ )y’ -a’)
R =V, +2=2¢[(x-a)’ +(y—a)’]+2

¢ = (xz _az)(yz _az)
24



Approximate Methods

From f_a f_a R@dxdy =0
_ 51
C, =——=
"84
Therefore,
5 2 2y 1.2 2
=—— (X" —a —-a
Yi=3 ( )y -a’)
The torsional rigidity is determined by
D, = 2G ydxdy = 0.1388G(2a)’
The exact value of D is

D, =0.1406G(2a)*

The approximation error is -1.2%.

29



Approximate Methods

ii) Two — term approximation

W, =(x"—a’ )y’ —a’)[e, +c,(x* + )]
s

By symmetry = R, =V, +2
¢ = (xz _az)(yz _az)
From J&Rzﬂdxdy =0 ¢2 = (xz — az)(yz - az)(xz + yz)
and J&R2¢2dxdy =0

We obtai
© oM 995 1 525 1
Q= ic 2 Q=057
2216 a 4432 a
Therefore
D, = 2Gﬂz/12dxdy = 0.14O4G(2a)4 - The erroris -0.14%. 26



Variational Methods

) Kantorovich Method [Kantorovich (1948)]

Assuming the approximate solution as : U = EC,.(X” .

i=1

where U, is a known function decided by b.c. condition.

C. is a unknown function decided by minimal “/”. => Euler Equation of C;

EX : The Torsional Problem with a Functional “I".

1w = [ G+ )’ —duldsdy

27



Variational Methods

Assuming the one-term approximate solution as :

u(x,y) = (b* - y")C(x)
Then,

1©) = [ [ A7 =y VIC(F +4y°C*(x) ~4(b” - y*)C(x)dxdy

Integrate by y
a 16 8 16
1(C) = —pC*+=bC*—=—b’Cldx
©=] a[1 5 3 3 ]
Euler’'s equation is

. 5 5
C'(x) —2—1?2C(x) =~7,7 Where b.c. condition is C(xa)=0

General solution is

C(x) = A cosh( |2 X)+ A, sinh(,[> 5)+1
2 b 2 b 28



Variational Methods

where A, = , A, =0
cosh( ég)
2 b
and ( ]
cosh( %%)
C(x) =11- 5 g
a
YO
cosh( 5 )

u=1J1- b L(b* - y?)




Variational Methods

) Rayleigh-Ritz Method

This is used when the exact solution is impossible or difficult to obtain.
First, we assume the approximate solutionas: U = E C.U,
=1

where U, are some approximate function which satisfy the b.c’s. Then, we can
calculate extreme I .

I=1(c,K,c) Choose c¢,~c, ie. a—[=K =a—1=0
dc, dc,
EX: V' +Xy=-X »(0)=y(1)=0
Its solution can be obtained from
| " 111 2 1
= — — (1Y) — = 2 —
j;(y +xy+x)§ydx 0 I j:)[z(y) S XY =Xy dx

30



Variational Methods

Assuming that

y= x(l—x)(c1 +c,x+c,x°K )

i) One-term approximation

y =cx(l-x)=¢ (x—xz) v =¢ (1-2x)

Then, ](cl)=j;1 %clz(l—4x+4x2)—§clz(x2—2x3+x4)—clx(x—x2)}dx

2 2
=i 1_2+f _i 1_24_1 - l_l =£CIZ_&
2 3 214 5 6 3 4 120 12

L 0= —¢-—=0 = ¢ =0263 = y(I)=0.263x(1-x)

ii) Two-term approximation

y=x(1-x)(c, +c,x) =¢(x=x")+c,(x* —x7)

31



Variational Methods

Then ¥ =c¢,(1-2x)+c,(2x-3x")
Ly, 2 2 3
I(c,,c,) =ﬁ)[5{cl (1—4x+4x )+2clcz(2x—7x +6x )
1

+c, (4x° =12x° +9x" )} - E{clz (x3 ~2x* 4 X ) +2¢,c, (x4 -2 +x° )

+¢,”(x° =2x° + x’ )} - {cl (x2 - X ) +c, (x3 - x" )}]dx

2
=i(1_2+i_l+%_l)+clcz(1_14_2_14_1_1)

2 34 5 6 372 5 3 7
_(,‘_12 ﬂ_3+2_l+2_2 _ﬁ_i

2\3 5 6 7 8) 12 20

19 , 11 107 , ¢ ¢,

—C +——=C(¢C,

= +——c,
120 70 1680 12 20

32



9y
dc,
9
ac,

Variational Methods

19 11 1
= —C+—C,=—

60 70 12

11 109 1
= —C +——C, =—

0.317 ¢, +0.127¢,=0.05 =  ¢,=0.177,¢,=0.173

= 1(2)=(0.177x-0.173x")(1 - x)

33



Examples

I) The Brachistochrone (fastest descent) Curve Problem - Proposed by
Johann Bernoulli (1696)

Il) Structural Dynamics — Formulation of Governing Equation of Motion

34



Summary

Many governing equations in physics and chemistry can be
formulated by functionals. Finding the extremals of functionals can

lead to the solutions in many problems in science and engineering.

Euler's Equations provide the necessary condition for evaluating
problems involving functionals. However, analyzing Euler’'s
equations sometimes can be difficult.

Calculus of Variations determines the extremals of functionals, even

though the solution is only approximated.

Calculus of Variations provides the theoretical basis for many
methods in engineering, such as the Principle of Virtual
Displacement (PVD) and the Finite Element Method (FEM).

35
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