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Introduction

In December 2009, a 200-pound corroded light pole fell across
the southeast expressway in Massachusetts.[1]

(Source: [1] I-team: Aging light poles a safety concern on mass. roads)



1.

Introduction

Failures of light poles are critical as they are typically located
adjacent to roadways, highway and bridges.

Failures of aging light poles can jeopardize the safety of users
and damage adjacent structures. (e.g., residential houses,
and electricity boxes.)

(Source: Internet) (Source: Internet)



Introduction

Therefore, aging light poles need to be repaired or removed
before residents get hurt.



Objective

To develop a damage detection methodology for light poles
structures.



Literature Review

1. There are three most common/possible damage locations in
light poles (Garlich and Thorkildsen (2005) [14] , Caracoglia and
Jones (2004)[7]; Conner et. al. (2005)[6])

(i) pole-to-baseplate connection,
(ii) handhole detail, and
(iii) anchor bolts (not considered in this study);
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Literature Review

2. Changes in modal frequencies and mode shapes are
expected while introducing damages into structures. (Lee
and Chung (2000) [44]; Abdo and Hori (2002)[4])

For example, first mode modal frequency of a single degree
of freedom (SDoF) system can be determined by following

equation: w=Vik/m

where w is first mode modal frequency, k is stiffness of the
structure, and m is mass of structure.

Since introduction of damage reduces k ( stiffness) of the
structure. As a result,
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Literature Review

3. Structural damages in light poles can be simulated by
reducing local materials' properties (i.e. Young's modulus)

in FE models. (Yan et. al. (2006) [42])

Since stiffness of a single degree of freedom (SDoF) system
can be written as:

k=3E1/h3

where £is Young’s modulus of material, and 7/is
moment of inertia, and h is the height of this SDoF.

£ ==k



Literature Review

4. Experimentally capture dynamic characteristics (such as modal
frequencies and mode shapes) of light poles are difficult and
time consuming. (Yan et. al. (2007)[43])



Literature Review

* How do damages effect light poles?
There will be changes in modal frequencies and mode shapes.

e Where are those effects? How much?

Three common damage locations. Use numerical methods to
find out.

e (Can those effects be represented by equations? (be
quantified?)

Use numerical methods to find out.



Approach

A research approach is determined based on:

1. Assume damages only occur at three most common damage
locations.

2. Using dynamic responses (i.e., modal frequency and mode
shapes) as parameters for investigating differences between
intact and damaged light poles.

3. Using numerical methods (i.e., finite element method)
instead of experimental methods.



Approach

* Simulate intact and damaged light poles by Finite Element
(FE) method, and then study the differences in modal
frequencies and mode shapes among intact and artificially
damaged FE models.

Differences
in
modal

frequencies
and mode

shapes === Artificial Damage

Intact light pole FE model Damaged light pole FE model
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Approach

Assumptions for this research approach:
* First ten modes modal frequencies are available.

* FE light pole is an undamped structure.

 Damages only occur at pole-to-baseplate connection, and
handhole detail.

* There is only one damage in any artificially damaged light
pole.



Research Methodology

Build a FE model of a light pole

L

Perform a convergence study to achieve optimal meshing density

Theoretical calculation using Rayleigh’ quotient to validate FE model

l

Introduce artificial damage to FE model

|

Intact light pole model

Artificially damaged light pole
model

{

|

Modal frequencies/mode shapes for

first ten modes

Modal frequencies/mode shapes
for first ten modes

J

J

Compare results from intact and damaged models

Find and study the differences between intact
and artificial damaged models

Determine relationships between artificial
damages and modal frequencies/mode shapes

Develop damage detection methods by
inversely using the determined relationships

O1
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Finite Element Models

Intact model

An FE model was created in ABAQUS® .



Finite Element Models

Configurations of an Example Light Pole

(source: ELEKTROMONTAZ RZESZOW SA: Lighting poles and masts,2009 )
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Finite Element Models

Technical data

TYPE H tw H  @dDe L m S a}‘;;h
m

S60SRWPId | 6 i 580 147  0.3x0.3x10

SJ0SRWPHd 7 20 L% 790 171 F100/200

S80SRWP/ 8 2.2 %0 276

SOOSRWP/A 9 4 25 100 1040 341 ... .,

S-100SRwP/A 10 35 48 60/170 100385 o

S110SRwP/A 11 22 1280 389

S120SRwPIA 12 2 1350 422

Note: H¢ = reduction piece for straight pole is ordered as separate element.

(source: ELEKTROMONTAZ RZESZOW SA: Lighting poles and masts,2009 )

-- Chosen geometry
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Finite Element Models

Materials (steel) & Geometries

Density: 7.85E-09 ton/mm?3
Young’s Modulus: 207,000 MPa
Poisson’s ratio: 0.3
Yield stress: 450 Mpa
Length of the pole: 6,000 mm
Diameter at top: 60 mm

Bottom: 140 mm

20



Base Plate Model

Base plate size: L x W x H: 300x300x30 (mm)
* Boundary condition: Tie constraint is used to
assemble the pole and the base plate.



Bolt Models

Surface Contact

Tie
constraint

Fixed
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Base Plate Model
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Handhole

* Handhole size:

250x105(mm)
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Verification of an Intact FE Pole Model

The verification of aintact FE pole model is conducted by
comparing first mode model frequencies between the FE result and
a theoretical calculation result.

First mode model frequency of the FE pole model created in
ABAQUS® is : 4.236 Hz (FE result).

Increment  0: Base State

Mode 2:Value= 708.22 Freq= 4.2355 (cycles/time)
Mode 3:Value= 14192. Freq= 18960 (cycles/time)
Meode 4:Value = 14192, Freq= 18960 (cycles/time)
Mede 5:Value= 89791. Freq= 47691 (cycles/time)
Mode 6: Value= 89791. Freq= 47691 (cycles/time)
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Theoretical Calculation

Given:
Density: 7.85E-09 Ton/mm?
Young’s Modulus: 207000 MPa X=6000 R=30mm;
Poisson’s ratio: 0.3 - r=26mm
Yield strength: 450 Mpa
Length of the pole: 6000 mm

R=70mm;

r=66mm

X=0 R=70mm;

: r=66mm
Cross section at base of pole(x=0) 26



Theoretically Computed Fundamental Frequency

1.Radius functions

1
Radius of external edge: R(X) := H).X+ 7(
Radius of internal edge: r(x) := R(x) — ¢

2.Functions for mass and moment of inertia

mx) = n-(R(X)z _ r(x)z)-7.85-10_

109 = (R - r(x)“)-%

27



Theoretically Computed Fundamental Frequency

3.Generalized mass, and generalized stiffness

L
2
m':= J m(x) P(x) dx Eq. 8.3.12
O Anil K Chopra. Dynamics of
structures-Theory and
L applications to earthquake
[ 2 engineering. Pg.312

£ o
k':= E1(x): —21p(x) dx

I
T

0

where (x) is shape function of cantilever beams. The best-
fit shape function is the one which provides lowest value of

first mode modal frequency.



Theoretically Computed Fundamental Frequency

0.5
First mode modal frequency:  w = { X))

\m'")
2 3
. 3x X 2
Shape function (¥ = ; ; W =1 —cos| X W) = ——
2:6000°  2-6000 | 2:6000) 00l
f (Hz) 4.361 4.298 4.396

Theoretical result: lowest value of fundamental
frequency is 4.298 Hz ();

FE result: 4.236 Hz.

Only 1.4% of difference. This means the FE result
is correct and accurate.
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Finite Element Models

Damaged models

Damaged models were simulated by introducing artificial damages to intact
light pole models.



Damage Simulations

Most common damage location:

Description Finite Life Constant, Threshold, Potential Crack Location Ilustrative Example
Ax10° (AF)1x
(ksi® (MPa?)) (ksi (MPa))
SECTION 3 — HOLES AND CUTOUTS

3.1 Net section of un-reinforced holes and 250.0 (85200) 24.0(165) In tube wall at edge of

cutouts. uareinforced handhole. < >
- -
- -

4.6 Full penetration groove-welded tube-to-
transverse plate connections welded from
both sides with back-gouging (without
backing ring).

Kr=16:11.0 (3750)
1.6 < Kr<2.3:3.9(1330)

32<

K;=32:10.0(69)
K;=51:7.0(48)

<K;=72:4531)

In tube wall at groove-weld toe.

(Source: NCHRP Report, Cost-Effective Connection Details for Highway Sign,
Luminaire, and Traffic Signal Structures)

32



Damage Simulations

1. Location:
Artificial damages have three damage location:L,, L, and L;

s Artificial damage



Damage Simulations

2. Different damage sizes (AA).

Artificial damages have five different sizes, including: AA€[0.2A,
0.4A, 0.6A, 0.8A, 1.0A], where A is the total cross-sectional area.

0.2A —20% Cross-section area damaged  0.6A -- 60% Cross-section area damaged
(at location L3) (at location L3)

34



Damage Simulations

3. Damage levels (AE).
Damages are simulated by reducing Young’s Modulus.
Including five levels: AE€[0.1, 0.3, 0.5, 0.7, 0.9]*E, where E is

the Young’s modulus of intact material.



Obtain first ten modes modal frequencies and mode shapes from
different damaged models (listed in following) and intact model.

Group A
AE=50% of Youngs modulus

AA=20% AA=40% AA=60% AA=80% AA=100%
Scenario A-1 | Scenario A-2 | Scenario A-3 | Scenario A-4 | Scenario A-5
Ly |\ Ly| Ly | L | L | Ly | L | L | Ly | Ly |Ly| Ly | Ly | Ly| Ls

Group B

A A=100% of total area

AE=90% AE=70% AE=50% AE=30% AE=10%
Scenario B-1 | Scenario B-2 | Scenario B-3 | Scenario B-4 | Scenario B-5
Ly |\ Ly | Ly | L | Ly| Ly | Ly | Ly| Ly | Ly |Ly| Ls | Ly | Ly | Ls

36
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Results and Discussion
Definition:

When the intact light pole is known, modal frequency
difference can be computed by the following equation:

(f,'jlimacr o ]C,"I|daliza(g>ed )
f}l/ |inracr

WherAf/ is the model frequency difference of an damaged pole in ith
mode with a damage locate at L, Flinacris modal frequency of the intact
model, and f/ldamaged is modal frequency of a damaged model

x 100%

Af;l _



Results and Discussion

Definition:
e Sensitive modes:

Out of first ten modes, the modes whose modal frequency
differences exceed the defined threshold value t..

Threshold value t. : 1.25 times the average modal frequency
differences of the first ten modes.



Results and Discussion

Definition:
* |nsensitive modes:

Out of first ten modes, the modes whose modal frequency
differences lower than the defined threshold value t..

Threshold value t;: 0.25 times the average modal frequency
differences of the first ten modes.

ts=0.25Y7/=1110/if /10



Results and Discussion

Curvature of mode shapes can be computed by Central Difference
Equation:

¢”(X)” _ ¢(X)n+l _ 2¢(§§)n + ¢(x)n—l

where ¢(x) is the displacement of mode shape at node n, d is displacement
between two nodes, and ¢”(x) is the curvature of mode shape at node n.

Changes in curvature of mode shapes can be computed by the following
equation:

AI”(/);; _ ¢;1 |fiamaged
¢ n |inracr




Summary of FE Results

Three patterns were found from FE results on modal

frequencies.

1. In different damage scenarios with same damage location,
some modes always have highest/lowest value in modal

frequency differences (Af)).
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Summary of FE Results

Sensitive/ insensitive modes for each damage location:

Table of sensitive/insensitive modes

Location | Sensitive modes | Insensitive modes
Ll 1, 7 6
L, 1,7 8, 10
L 9or 10 7

The combination of sensitive modes and insensitive modes
is unique for each damage location.
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Summary of FE Results

2.(1) Linear relationships were found between damage sizes
and modal frequency differences.

0 01 0.2 03 0.4 05
Model frequency difference ( Af] )



Quantification of Damages

Linear relationships can be described by the following
equation:

Damage size a = (IA‘]‘;.‘/. + b
Location(j) | Best-fit mode(i) a b R?
] 10 0.0255 | 0.4614 | 0.9841
2 6 0.0526 | 0.1665 | 0.9966
3 4 0.6858 | -0.1251 | 0.9750




2. (2) Nonlinear relationships were found between damage
levels (reduction in Young’s modulus) and modal
frequency differences.
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Quantification of damage level:

Relationship between damage level and modal frequency

differences can be described by the following equation:

Damage level ,[3" = ln(Af;.j) +d

Location(j) | Best-fit mode(i) C d R>
] 2 -0.195 | 0.3900 | 0.9911
2 2 -0.194 | 0.3879 | 0.9914
3 3 -0.199 | 0.3628 | 0.9914




Summary of FE results

3. Curvatures of second mode shapes changes the most (Ary, ..)
at damage location.

Artificial damage location L1

L4

12+~ -1

1_ — — —

0 200 400 600 800 1000 1200 1400 1600 1800 2000



Special Case: Blind-test

* Assumption: the intact light pole is unavailable.

 Modal frequencies of plural light poles can always be
obtained.

1) Pick an arbitrary light pole as baseline instead of intact light pole.
2) Use adjusted equation to compute modal frequency difference.

P (f;'jlbaseline - f}lldamaged)

NG .
i
f;"] |base/ine

3) Determine the sensitive/insensitive modes using moving thresholds t. and t..
4) Check the following Table and determine the damage location.

x 100%

Location | Sensitive modes | Insensitive modes
L] 1, 7 6
L, 1,7 8, 10
L 9or 10 7
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Proposed Methodology

Extract first 10 model frequencies/ mode shapes from an
intact model & unknown models;

Compute the modal frequency differences and changes in
mode shapes of the unknown light poles;

Compute thresholds t,and t;, and use them to determine
sensitive/insensitive modes;

Locate the damage by checking the combination of
sensitive and insensitive modes of unknown light poles in
Table of sensitive/insensitive modes; or locate the damage
by finding Ar g ...

Use obtained linear/non-linear equations to quantify the
damage.



Conclusion

1. Locate damage using modal frequency -- since the
combination of sensitive modes and insensitive modes is
unique for each damage location, one can locate the damage
of light pole by checking the following table:

Table of sensitive/insensitive modes
Location | Sensitive modes | Insensitive modes
L] 1, 7 6
L, 1,7 3, 10
L3 9or 10 7




Conclusion

2. Quantify damage -- substituting modal frequency
difference into following equations:

Damage size:

Damage level:

a’ =aAf! +b

B =cIn(Af))+d

Location(j) | Best-fit mode(i) a b R’
1 10 0.0255 | 0.4614 | 0.9841
2 6 0.0526 | 0.1665 | 0.9966
3 4 0.6858 | -0.1251 | 0.9750
Location(j) | Best-fit mode(i) C d R>
] 2 -0.195 | 0.3900 | 0.9911
2 2 -0.194 | 0.3879 | 0.9914
3 8 -0.199 | 0.3628 | 0.9914




Conclusion

3. Locate damage using mode shape curvature -- In 2nd mode,
maximum curvature change (Ar.) occurs at damage
location. Therefore, one can use changes in curvature of 2rd
mode shape to localize damages. However, this method is
limited.

*When damage size is greater than 80% of cross-section

area, the maximum curvature changes accurately locate at
damage locations.

Artificial damage location L1

L
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* When damage size is between 40% to 60% of cross-section
area, there will be shifts between the maximum curvature
change location and damage location.
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* When damage size is lower than 20% of cross-section area,
the curvature change is not sensitive to localize the damage.
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Conclusion



Future work
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