# Portland Cement Cor arly Age using Embed Temperature Sensors

# **ALICE CHAO** Graduate Student

S )F: ON HEAT AND

٩M

)F: ON HEAT AND

٩M

# king during hydration can le with quality concern, time co

# e found on the investigation ded fiber optic temperature





Sources the greatest rate of heat ount of heat is developed with

- npounds that account for the l
- lowest rates of reaction with v
- S (dicalcium silicate) >  $C_3A$
- uminoferrite).
- n and total heat liberated are a





ig in a range of structural materi

c sensors are fragile and therefor

## ptic sensors used in civil engine

of a single measurement point at

)F: ON HEAT AND

٩M

#### in, temperature and vibration simultane

- periments under adiabatic conditions to ement concrete.
- mperature variation within concrete str mocouple sensors.
- ormed isothermal calorimetry test to stution heat.
- 02) studied the impacts of high tempera

#### nidt methods.

uted FOS on to full-scale prestressed c

methods for calculating activation enernerner, the tendernerne tion, radiation and shading effects into

BG sensors in over 10 bridges in China

iew of FOSs used in I35W bridge in M

#### l to predict early age temperature profil

)F: ON HEAT AND

٩M

## ondition, using FP fiber optic temp

- sor.
- n the measured data, the amount of
- vere calculated using theoretical m
- Dimension and w-c ratio used in ex



٩M



SET NO. 1 2011)

EXPERIME (JULY

CONCRE

CIMENS

| 8" Specimens   |       |       | <b>3</b> <sup>66</sup> X |
|----------------|-------|-------|--------------------------|
| r-cement-ratio |       | Wat   |                          |
| 0.50           | 0.60  | 0.4   | 0.45                     |
| 1.510          | 1.510 | 0.637 | 0.637                    |
| 2.562          | 2.562 | 1.081 | 1.081                    |
| 3.719          | 3.719 | 1.569 | 1.569                    |





expa mode

Univ Elec Cent

# nt from the first experimental

# of surrounding conditions or was found in the first experin

- temperature changes when the
- value, which was 25 °C in the
- erature difference at the surface

Styrofoam Chamber

<u>CN7500</u>

Opt

Circula



















)F: ON HEAT AND

٩M









$$(T_{c_peak})_C = 39.19$$
 °(  
 $(w/c) = 0.45$ 





)F: ON HEAT AND

٩M

experimental sets.



1st Approach: Used for a

and heat of hydration



- 2<sup>nd</sup> Approach: Used for
- $E_{a1}$  and  $E_{a2}$  are 29000 J/
- Two values of E<sub>a</sub> were se
  - heat evolution within cor
- $E = 20000 \, \text{J/malwas of}$

# commonly used in the pairs of the pairs of the pairs of the second secon

erogeneous and compose ons the activation energy

#### rature at instant time (°K),

tion (DOH) at instant time (unit le = heat of hydration and  $H_{\mu}$  = ulti

- $\frac{x P_{cem} + 461P_{slag}}{tion heat (kJ/kg)}$
- ment over total cementitious conte
- ag over total cementitious content,

#### ny diation at this t (KS/KS/

## concrete specific heat (0.96kJ/kg/

temperature (°C)

## $92 - 0.043T_{c}(-0.00017 - C_{p}/H_{u})$

 $dH/dT_c = C_p$ 



- $(/cm)]/[0.194 + w/cm] + 0.5 \cdot P_{FA} +$
- e parameter (hr)
- pe parameter
- ree of hydration
- $(t_e)^{\beta} \times \alpha_u \times \exp(-\tau/t_e)^{\beta} \times \exp[E_a/1]$
- $(1 1 1)^{1} (T 1)^{1}$

## above

## bove

# nt activation energy (J/mol) al gas constant (8.3144J/mol/<sup>o</sup>

# P(t), concrete hydration heat





rgy of s w/c







- energy at ious w/c
- S (w/c = 0.40) S (w/c = 0.45) S (w/c = 0.50) S (w/c = 0.55)S (w/c = 0.55)



























of concrete 000 J/mol)

$$-C (w/c = 0.40)$$
$$-C (w/c = 0.45)$$
$$-C (w/c = 0.50)$$
$$-C (w/c = 0.55)$$

Figure 34. I specimens



)F: ON HEAT AND

٩M

- nent within concrete cylinders was prased on ambient conditions during th
- luced inaccurate temperature measur
- fered by environmental conditions.
- Perot fiber optic temperature sensor p

- et:
- acement, the development of surface temperature inside the glass chambe

| оC    | t (hr) | оC   |
|-------|--------|------|
| 51.42 | 13.52  | 59.3 |
| 52.88 | 14.16  | 52.4 |
| 55.08 | 15.24  | 57.1 |

## ture of 3"×6" concrete specimens

| 0.4 | 0.45 | 0.5 |
|-----|------|-----|
|     |      |     |



## nax are determined to be 29.21 kJ/m

o give up in order to overcome the re 0.40), 1.129 kJ/mol (w/c = 0.50) an 1.16 kJ/kg.

#### are found to be **29.97 kJ/mol** and

## 4 kJ/kg and 38.778 kJ/kg at the sur

- proportional to apparent activation e
- s w/c increases.
- nd heat of hydration are dependent of

## **Second Approach**

and in data develope a selection of the second

| <b>4"x8"</b> | 3'                     |
|--------------|------------------------|
| H(t) kJ/kg   | $H(t)_{surface} kJ/kg$ |
| 51.16        | 35.27                  |
| 55.00        | 32.70                  |
| 70.40        | 35.74                  |

ach and the second approach (with tion are only slightly different. This

)F: ON HEAT AND

٩M

nd setups last 70 hours and 45 hours d heat of hydration were studied bas on real-time measurement, and (b) th

greement and considered to be relial

- emperature measurement in all expension of the second seco
- this research is a novel FP sensor in

- his guidance in the determinati
- n Electrical and Computer Eng ty to collaborate with her PhD
- r performing my experiments.
- ing a very helpful partner. He c
- ng in my concrete experimenta

