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Free Vibration of Multi-Degree-of-Freedom

(MDOF) Systems

e General

Static DOF (total number of independent deformation modes)
versus dynamic DOF (total number of local inertial forces)

MDOF systems have multiple modal frequencies and mode shapes.

Both SDOF and MDOF systems are models simplified from real
structures.

In MDOF systems, dynamic equilibrium is attained locally for
each DOF and globally for the system. The system’s dynamic
governing equation can be derived when all DOF's are evaluated.

Discrete MDOF systems are usually considered in practical situa-
tions due to the ease of numerical implementation; linear algebra
and matrix calculus are used.

Consideration of boundary condition (B.C.)

e Determination of structural properties for discrete
MDOF systems

Mass — Mass lumping (types of inertial forces; linear and rota-
tional)

Damping — Usually associated with individual DOF’s mass and
stiffness, e.g., viscous damping.

Stiffness — Flexibility approach; F' = K1

Example — Mass and Stiffness Matrices of Building Mod-
els

* When EI, ~ 0 —
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Figure 1: Mass and stiffness matrices of a two-story building model

* When EI, = FI,. —

* When FEI, — oo —
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— Example — Stiffness Matrix of a Cantilever Beam

e Approaches for deriving dynamic governing equa-
tions

1. Dynamic equilibrium — Newton’s second law of motion and
D’Alembert’s principle
2. Lagrange’s equation of motion
3. Hamilton’s principle
Lagrange’s and Hamilton’s approaches are not easy to be implemented

for numerical computation; subroutines for differentiation and integra-
tion are required.

e Formation of governing equations with active DOF's

— Static condensation

* The mass matrix formulation usually is associated with trans-
lational DOF only, while the formulation of the stiffness ma-
trix is associated with both translational and rotational DOFs,
leading to a large stiffness matrix.

* The purpose of static condensation is to eliminate the extra-
neous DOF's associated with rotation from the stiffness matrix
before the equations of motion can be written.

Consider the stiffness matrix to be of the following form.
Ky K u_ P, _ P, (1)
Koy Koo | | 0 Py 0
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where u and 0 are the subvectors of the displacements to be re-
tained (translational) and condensed out (rotational). When there
is no rotational force subvectors acting in the structure, it is pos-
sible to express the rotational displacement by means of the fol-
lowing form.

0 = —K,5 Kou (2)

From Eq.(1), we also have
Kyu+ Ky = P, (3)
Substituting Eq.(2) into Eq.(3) gives
Kyu — KigKgg Koou = P, (4)
Since the purpose of static condensation is to obtain
Ku =P (5)

we now find the K, to be

K, = Ky — thK;@lth (6)

as the statically condensed stiffness matrix which contains trans-
lational terms only. Note that in K;, Kt contains longitudinal
and transverse stiffness terms.

Kinematic condensation
* In some applications such as buildings and bridges, transverse
stiffness terms are of major concerned.

* The purpose of kinematic condensation is to eliminate the
DOFs that are of secondary importance in the response of
structures.

The relationship between Ky, (contains both longitudinal and trans-
verse stiffness terms) and Kj; (contains only longitudinal stiffness
terms) can be defined by a transformation matrix 7.

Ktt — TKtt (7)
Ktt = TTKtt (8)
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For example,

Ktt = TKtt
U1l 10
U1 . 0 0 Ui
(%) 0 0
Or
K = T" Ky
10 4 (751
upy [0 0 U1
00 (%]

Similarly, T' can be applied to other terms in the equation of mo-
tion.
mu+cu+ku=P (11)

Replacing 11, 1, and u with T, T, and T in Eq.(11) gives
m7Tu + cTu+kTa=P (12)
Pre-multiply 77 to each term in Eq.(12).
T"TmTa+T"cTa+T"kTu=T"P
mu +cu + ka =P (13)
where m = 77mT, ¢ = T7cT, and k = TTkT are the kinemat-

ically condensed mass, damping, and stiffness matrices, respec-
tively.

e Concept of mode shapes and modal frequencies

Consider an undamped MDOF system in free vibration. The governing
equation is
mii +ku=0 (14)

where m is the mass matrix, 4 is the acceleration vector, k is the
stiffness matrix, and u is the displacement vector, both of the n-th
mode. Note that u = u(z,t). The solution is

u(z,t) = gn(t)on(z) (15)
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where g, (t) is the generalized coordinate (time-independent) and ¢, (z)
is the shape function or mode shape. The governing equation becomes

k —wim| ¢, =0 (16)

where w,, is the modal frequency of the n-th mode and is evaluated by
solving the following equation.

det [k — w2m| =0 (17)

(Example of a building-type model)

e Orthogonality of modes

— Property I: ¢f¢p; =0 when i # j
— Property II: ¢7 ¢; =1 when i = j

leading to

— ¢Tko; =0 and ¢ m¢; = 0 and ¢! c; = 0 when i # j
— ¢Tko; = k; and ¢! m¢; = m; and ¢! cg; = ¢; when i = j

The mode shape matrix (or modal matrix) is formed by
® = [9;0] (18)

where n is the number of modes. Therefore, the diagonal property
matrices are

M=d"m®
C=®"cd (19)
K = ®'k®
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Mode shapes can be normalized by setting its largest element to be
unity. If normalized to individual DOF’s mass, we have
M, = ¢,m¢, = 1
'md =1 (20)

where 1 is the identity matrix.

e Modal expansion of displacements
u= Z ¢iq; = ®q (21)
=1

where q is the modal coordinates or normal coordinates which are de-
termined by

¢Tmu B ¢Tmu

T ¢Tme: M,

if normalized w.r.t. mass.

qi = ¢¢Tmu (22)

e Estimation of modal frequencies using Rayleigh’s
quotient
\ = ¢"ko
~ ¢Tmg
where A is called Rayleigh’s quotient.

(23)

— When ¢ is the actual mode shape vector ¢; of the i-th mode,
A= w?.

— When ¢ is a first-order approximation to the actual mode shape
vector, the estimated modal frequency is with an second-order
error.

2

ne

— ) is bounded between \; = w? and A\, = w

e Estimation of modal frequencies using inverse iter-
ative method

1. Choose a starting vector v;.
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2. Determine vjyq by solving

ij+1 = IMvj (24)

Compute the norm of vj1 by

ajr1 = \/Vﬁlvj (25)

. Normalize vj;1 w.r.t. the mass matrix.

T
Y VitV
Vitz = T Y (26)
V Vi1 my;
Vjy2 converges if it satisfies
kvji2 = mvjq (27)

where the ratio between any two vectors converges to the square
of the fundamental frequency w?.

1
Vel ¥ T2V (28)

If vj12 does not converge, repeat steps 2 5.

Reading

[AKC: Ch9, Ch10]
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Figure 2: Stiffness matrix of a cantilever beam
Prof. Yu 9

SD-04



