CIVE.5570 Structural Dynamics Fall 2016

Tuned Mass Damper (TMD) Systems

¢ General

— TMD is "a device consisting of a mass, a spring, and a damper
that is attached to a structure in order to reduce the dynamic
response of the structure”, which is a concept first introduced by
H. Frahm (1909).

— The purpose of using TMD is to produce an artificial force origi-
nated from the mass of TMD in order to counteract the structural
vibration at which the TMD is installed.

— TMD is most effective for periodic excitations and wind loads.

e Types of TMD

Figure 1 provides several possible types of TMD for buildings.
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Figure 1: Types of TMD for buildings [Matta and De Stefano (2009)]
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e TMD Theory for SDOF Systems

Generally, a SDOF-TMD system can be modeled as shown in Figure
2. Various cases of SDOF-TMD systems can be defined by
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Figure 2: SDOF-TMD system [JJC: Figure 4.1]

— Undamped SDOF system with undamped TMD: ¢ = 0 and ¢; = 0
— Undamped SDOF system with damped TMD: ¢ =0 and ¢4 # 0
— Damped SDOF system with damped TMD: ¢ # 0 and ¢4 # 0

(Q: Why there is no damped SDOF systems with undamped TMD?)

— Undamped SDOF system with undamped TMD: ¢ = 0
and ¢; =0

x Governing equation:

myq [ud -+ u] + kqug = —MqQg = _mddg (1>
mii + ku — kqug = —mgay +p = —mgily + p (2)
* Solution:
u(t) = Gsinwpyt (3)
ug(t) = g sinwyt (4)
where
ag(t) = ty(t) = aysinwyt (5)
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p(t) = psinw,t (6)
ﬁ:é 1—p3\  may (1+m—pj )
k D1 k’ D1
- 2
Adzﬁ mp _mag<m> (8)
kg \ Dy kg \D;

Dy = [1—p?][1 — pf] — mp? (9)

_ Mgy
= — 10
m="0 (1)

Wp Wp
= F 11
P=" ﬁ (11)

m

Wp Wp
= — = 12
Pd g iy (12)

mq

* For 1 —p3+m =0, D; =1 and
LD
== 13
i="? (13)
. p o, ma
=—= 14
Ud k" + oy (14)
leading to the optimal damper frequency

= (15)

which determines the optimal damper stiffness

Wilopt = ———
dlort = A

Kalopt = walZy; - ma =

wp mm

14+m

(16)

Finally, the maximum damper displacement at the opti-
mal damper frequency is

. 14+m (|p Qg
=— ||+ — 17
w2 () o
x Design steps:
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1. Use the condition 1 — p3 +m = 0.
Wp

V1+m

2. Compute wgopt =

3. Compute kg|opt-

— Undamped SDOF system with damped TMD: ¢ = 0 and
Cd 7é 0

*x Governing equation:

M [tig + 0] + kqug + cqtiq = —mgay, = —mgii,  (18)
mil + ku — kqug — cqig = —mga, +p = —mgtiy, +p  (19)
* Solution:
u(t) = wexp (iwpt) (20)
ug(t) = g exp (iwpt) (21)
where

agy(t) = agexp (iwyt) (22)
p(t) = pexp (iwpt) (23)

)
)
[fQ p —Fzzfdpf}
m)] (24

_mdy {(1 +m) 2 — p* +i28pf (1

=|u= %Hl exp (idy) — %HQ exp (ida) (25)

. PPt may
U — 7= — T——=
kDy kD,

= |Ug = %H?, exp (—id3) — %]—Ll exp (—id3) (26)

Dy = [L= | [f* = /% — mp*f* + 2apf [L = p* (1 + m)] [27)
f== =L

The H factors are

o VU= + apf)”
1 | D
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VIO +m) £2 = P + [26apf (1+m)]?

Hy = 30
2 ’D2| ( )
2
p
H; = — 31
3 ‘DQ‘ ( )
Hi— (32
LD,

Do) = VR (D2)? +S(Da)® (33
R(Dy) = [1=p?| [f2 = p?] — mp’f? (34)

S (Dy) = 2apf [1—p* (L+m)]  (35)
with

51 = 1 — 63 (36)
52 = g — 53 (37)
63 = tan™! ;Egz; (38)

_y 28apf
o = tan™! 7 d_pp2 (39)

oy 26pf(1+m)
ap = tan ! (1 T m) f2 — 2 (40)

Usually, m € [0.01,0.1]. In the case of m < 0.05, H; ~ H,
and 01 = 0s.

Consider the optimization of TMD for ground motion (re-
lated to Hs) with m = 0.01 and f = 1. Figure 3 shows the
interaction between Hy and p for various p,;. The optimal so-
lution of pg or &; results in the minimum value of Hy, which
is determined by

L—pi(L+m)|=1—p3(1+m)] (41)

leading to the optimal frequency ratio, f,, and the opti-
mal damper frequency, wq|opt-

v1—0.5m
fopt = 1 + — (42)
m
Wd|opt = foptw (43)
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Figure 3: Plot of Hy versus p [JJC: Figure 4.15]

which determines the optimal damper stiffness, kg|opt-

1—-05m k
Ealont = 2 . - .. 44
dlopt = wWalgpy - Ma Qrm? m ™ (44)
The optimal value of H, is also found.
T
+m (45)

Hslont =
2lop = 5=

which is associated with two optimal loading frequency ratios,

1++/0.5m (46)

pl,Q‘opt = 1+m

p172|0pt-

The result is shown in Figure 4. Also, the optimal damping
ratio for the TMD at the optimal tuning frequency is

(3 ~ \/0.5771) m @)

Salopt = J 8(1+m)(1—0.5m)
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Figure 4: Plot of p; 2|opt versus m [JJC: Figure 4.18]

m
The relationship between Ho|qp, and m = s provided in
m

Figure 5. With same optimal parameters, Hy|opt versus m is
shown in Figure 6. Note that H is associated with the dy-
namic response of primary mass (system) and H, is associated
with the TMD. The ratio of maximum TMD amplitude to

H
maximum system amplitude, f, is provided in Figure Notice

2
that the optimal parameters are derived from H, rather than
H,4. This may result in uneven values of two peaks in Hy, as
shown in a numerical example in Figure 8.

— Design steps:

NS O 0N

Determine Hs|opt and Hyopt.-
Determine m.

Determine fop.

Compute wy.

Compute ky.

Determine &;opt-

Compute c¢y.
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Figure 5: Plot of Hs|opt versus m [JJC: Figure 4.20]

e Damped SDOF system with damped TMD: ¢ # 0 and ¢4 # 0

— Governing equation:

M [t + @] 4 kgug + cqtia = —maa, = —mgii, (48)
mil + ku — kqug — cqtig + ¢t = —mga, +p = —mgiy, +p (49)
— Solution:
= %Hg) exp (id5) — %He exp (idg) (50)
. D . ma .
Ug = %H7 exp (—id7) — L 4 Hg exp (—ids) (51)
(52)
where
VG s
Hs = (53)
| D]
VIO +m) 2= 02 + [26apf (1+m)]?
| D3]
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|u:|pt

Hy

300

Dol = [(1=2) (£ = ) = s = sg6ar ]
+4{5p (f2 —p2) +&afp [1 —p2<1+m)}2}
05 = aq — 07
56 = (g — (57

e §p(f? = p*) + &fpl — p* (1 +m)]
67 = tan™" {2' (1— p2) (f2 = p2) — mf2p? — 45§dfﬂ2}
ag = tan~! 2¢p
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Figure 6: Plot of Hy|opt versus m [JJC: Figure 4.21]
H— 69
= VLTG5

Since | D3| depends on &, fope and &ifope cannot be analytically

determined.

— Design steps:

1. Specify m and ¢ for a range of f and &, in Hj versus p

plots.

2. Determine min [Hs| for a particular combination of f and ;.
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Figure 7: f versus m [JJC: Figure 4.22]
2

3. Use different values of m and ¢ to establish the interaction
among these parameters. fop¢. Determine m.

Determine fops.
Compute wy.
Compute kgy.

NS G

Determine &;opt-
8. Compute cg.

— Note that adding damping to the primary mass has an apprecia-

H
ble effect for small m. When ¢ is small, ratio =g essentially
5
independent of &.

e Natural frequencies of some TMD systems

— Simple pendulum TMD: w = J

L
. 2
— Liquid TMD: w = f\/gh

29

— U-tube liquid TMD: w = T
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Figure 8: Plot of Hy versus p for m = 0.01, f,px = 0.9876, and various &,
values including &, [JJC: Figure 4.24]

e Two Examples of TMD systems

— The Landmark Tower, Yokohama, Japan
— Taipei 101, Taipei, Taiwan

Reference

E. Matta and A. De Stefano (2009), ” Robust design of mass-uncertain rolling-

pendulum TMDs for the seismic protection of buildings”, Mechanical Systems
and Signal Processing, 23: 127-147.
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Figure 9: Compound pendulum TMD system (340 tons) in the Landmark
Tower, Yokohama, Japan
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Figure 10: Simple pendulum TMD system (730 tons) in Taipei 101, Taipei,

Taiwan
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