
CIVE.5570 Structural Dynamics Fall 2016

Tuned Mass Damper (TMD) Systems

• General

– TMD is ”a device consisting of a mass, a spring, and a damper
that is attached to a structure in order to reduce the dynamic
response of the structure”, which is a concept first introduced by
H. Frahm (1909).

– The purpose of using TMD is to produce an artificial force origi-
nated from the mass of TMD in order to counteract the structural
vibration at which the TMD is installed.

– TMD is most effective for periodic excitations and wind loads.

• Types of TMD

Figure 1 provides several possible types of TMD for buildings.

 

Figure 1: Types of TMD for buildings [Matta and De Stefano (2009)]
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• TMD Theory for SDOF Systems

Generally, a SDOF-TMD system can be modeled as shown in Figure
2. Various cases of SDOF-TMD systems can be defined by

 

Figure 2: SDOF-TMD system [JJC: Figure 4.1]

– Undamped SDOF system with undamped TMD: c = 0 and cd = 0

– Undamped SDOF system with damped TMD: c = 0 and cd 6= 0

– Damped SDOF system with damped TMD: c 6= 0 and cd 6= 0

(Q: Why there is no damped SDOF systems with undamped TMD?)

– Undamped SDOF system with undamped TMD: c = 0
and cd = 0

∗ Governing equation:

md [üd + ü] + kdud = −mdag = −mdüg (1)

mü + ku− kdud = −mdag + p = −mdüg + p (2)

∗ Solution:

u(t) = û sin ωpt (3)

ud(t) = ûd sin ωpt (4)

where

ag(t) = üg(t) = âg sin ωpt (5)

Prof. Yu 2 SD



CIVE.5570 Structural Dynamics Fall 2016

p(t) = p̂ sin ωpt (6)

û =
p̂

k

(
1− ρ2

d

D1

)
− mâg

k

(
1 + m̄− ρ2

d

D1

)
(7)

ûd =
p̂

kd

(
m̄ρ2

D1

)
− mâg

kd

(
m̄

D1

)
(8)

D1 = [1− ρ2] [1− ρ2
d]− m̄ρ2 (9)

m̄ =
md

m
(10)

ρ =
ωp

ω
=

ωp√
k

m

(11)

ρd =
ωp

ωd

=
ωp√
kd

md

(12)

∗ For 1− ρ2
d + m̄ = 0, D1 = 1 and

û =
p̂

k
(13)

ûd = − p̂

kd

ρ2 +
mâg

kd

(14)

leading to the optimal damper frequency

ωd|opt =
ωp√

1 + m̄
(15)

which determines the optimal damper stiffness

kd|opt = ωd|2opt ·md =
ω2

pmm̄

1 + m̄
(16)

Finally, the maximum damper displacement at the opti-
mal damper frequency is

ûd =
1 + m̄

m̄

(∣∣∣∣∣ p̂k
∣∣∣∣∣+

∣∣∣∣∣ âg

ω2
p

∣∣∣∣∣
)

(17)

∗ Design steps:
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1. Use the condition 1− ρ2
d + m̄ = 0.

2. Compute ωd|opt =
ωp√

1 + m̄
.

3. Compute kd|opt.

– Undamped SDOF system with damped TMD: c = 0 and
cd 6= 0

∗ Governing equation:

md [üd + ü] + kdud + cdu̇d = −mdag = −mdüg (18)

mü + ku− kdud − cdu̇d = −mdag + p = −mdüg + p (19)

∗ Solution:

u(t) = ū exp (iωpt) (20)

ud(t) = ûd exp (iωpt) (21)

where

ag(t) = âg exp (iωpt)(22)

p(t) = p̂ exp (iωpt)(23)

ū =
p̂

kD2

[
f 2 − ρ2 + i2ξdρf

]
−māg

kD2

[
(1 + m̄) f 2 − ρ2 + i2ξdρf (1 + m̄)

]
(24)

⇒ ū =
p̂

k
H1 exp (iδ1)−

mâg

k
H2 exp (iδ2) (25)

ûd =
p̂ρ2

kD2

− mâg

kD2

⇒ ūd =
p̂

k
H3 exp (−iδ3)−

mâg

k
H4 exp (−iδ3) (26)

D2 = [1− ρ2] [f 2 − ρ2]− m̄ρ2f 2 + i2ξdρf [1− ρ2 (1 + m̄)] (27)

f =
ωd

ω
=

ρ

ρd

(28)

The H factors are

H1 =

√
(f 2 − ρ2)2 + (2ξdρf)2

|D2|
(29)
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H2 =

√
[(1 + m̄) f 2 − ρ2]2 + [2ξdρf (1 + m̄)]2

|D2|
(30)

H3 =
ρ2

|D2|
(31)

H4 =
1

|D2|
(32)

|D2| =
√
< (D2)

2 + = (D2)
2 (33)

< (D2) =
[
1− ρ2

] [
f 2 − ρ2

]
− m̄ρ2f 2 (34)

= (D2) = 2ξdρf
[
1− ρ2 (1 + m̄)

]
(35)

with

δ1 = α1 − δ3 (36)

δ2 = α2 − δ3 (37)

δ3 = tan−1 = (D2)

< (D2)
(38)

α1 = tan−1 2ξdρf

f 2 − ρ2
(39)

α2 = tan−1 2ξdρf (1 + m̄)

(1 + m̄) f 2 − ρ2
(40)

Usually, m̄ ∈ [0.01, 0.1]. In the case of m̄ ≤ 0.05, H1 ≈ H2

and δ1 ≈ δ2.

∗ Consider the optimization of TMD for ground motion (re-
lated to H2) with m̄ = 0.01 and f = 1. Figure 3 shows the
interaction between H2 and ρ for various ρd. The optimal so-
lution of ρd or ξd results in the minimum value of H2, which
is determined by

|1− ρ2
1 (1 + m̄) | = |1− ρ2

2 (1 + m̄) | (41)

leading to the optimal frequency ratio, fopt, and the opti-
mal damper frequency, ωd|opt.

fopt =

√
1− 0.5m̄

1 + m̄
(42)

ωd|opt = foptω (43)
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Figure 3: Plot of H2 versus ρ [JJC: Figure 4.15]

which determines the optimal damper stiffness, kd|opt.

kd|opt = ωd|2opt ·md =
1− 0.5m̄

(1 + m̄)2 ·
k

m
·md (44)

The optimal value of H2 is also found.

H2|opt =
1 + m̄√
0.5m̄

(45)

which is associated with two optimal loading frequency ratios,
ρ1,2|opt.

ρ1,2|opt =

√
1±

√
0.5m̄

1 + m̄
(46)

The result is shown in Figure 4. Also, the optimal damping
ratio for the TMD at the optimal tuning frequency is

ξd|opt =

√√√√ (
3−

√
0.5m̄

)
m̄

8 (1 + m̄) (1− 0.5m̄)
(47)
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Figure 4: Plot of ρ1,2|opt versus m̄ [JJC: Figure 4.18]

The relationship between H2|opt and m̄ =
md

m
is provided in

Figure 5. With same optimal parameters, H4|opt versus m̄ is
shown in Figure 6. Note that H2 is associated with the dy-
namic response of primary mass (system) and H4 is associated
with the TMD. The ratio of maximum TMD amplitude to

maximum system amplitude,
H4

H2

, is provided in Figure Notice

that the optimal parameters are derived from H2 rather than
H4. This may result in uneven values of two peaks in H4, as
shown in a numerical example in Figure 8.

– Design steps:

1. Determine H2|opt and H4|opt.

2. Determine m̄.

3. Determine fopt.

4. Compute ωd.

5. Compute kd.

6. Determine ξd|opt.

7. Compute cd.
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Figure 5: Plot of H2|opt versus m̄ [JJC: Figure 4.20]

• Damped SDOF system with damped TMD: c 6= 0 and cd 6= 0

– Governing equation:

md [üd + ü] + kdud + cdu̇d = −mdag = −mdüg (48)

mü + ku− kdud − cdu̇d + cu̇ = −mdag + p = −mdüg + p (49)

– Solution:

ū =
p̂

k
H5 exp (iδ5)−

mâg

k
H6 exp (iδ6) (50)

ûd =
p̂

k
H7 exp (−iδ7)−

mâg

k
H8 exp (−iδ8) (51)

(52)

where

H5 =

√
(f 2 − ρ2)2 + (2ξdρf)2

|D3|
(53)

H6 =

√
[(1 + m̄) f 2 − ρ2]2 + [2ξdρf (1 + m̄)]2

|D3|
(54)
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Figure 6: Plot of H4|opt versus m̄ [JJC: Figure 4.21]

H7 =
ρ2

|D3|
(55)

H8 =

√
1 + (2ξρ)2

|D3|
(56)

|D3| =
[(

1− ρ2
) (

f 2 − ρ2
)
− m̄f 2ρ2 − 4ξξdfρ2

]2
+4

{
ξρ
(
f 2 − ρ2

)
+ ξdfρ

[
1− ρ2 (1 + m̄)

]2}
(57)

δ5 = α1 − δ7 (58)

δ6 = α2 − δ7 (59)

δ7 = tan−1

{
2 · ξρ (f 2 − ρ2) + ξdfρ [1− ρ2 (1 + m̄)]

(1− ρ2) (f 2 − ρ2)− m̄f2ρ2 − 4ξξdfρ2

}
(60)

α3 = tan−1 2ξρ (61)

Since |D3| depends on ξ, fopt and ξd|opt cannot be analytically
determined.

– Design steps:

1. Specify m̄ and ξ for a range of f and ξd in H5 versus ρ plots.

2. Determine min [H5] for a particular combination of f and ξd.
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Figure 7:
H4

H2

versus m̄ [JJC: Figure 4.22]

3. Use different values of m̄ and ξ to establish the interaction
among these parameters. fopt. Determine m̄.

4. Determine fopt.

5. Compute ωd.

6. Compute kd.

7. Determine ξd|opt.

8. Compute cd.

– Note that adding damping to the primary mass has an apprecia-

ble effect for small m̄. When ξ is small, ratio
H7

H5

is essentially

independent of ξ.

• Natural frequencies of some TMD systems

– Simple pendulum TMD: ω =
g

L

– Liquid TMD: ω =
2π

L

√
gh

– U-tube liquid TMD: ω =

√
2g

L
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Figure 8: Plot of H4 versus ρ for m̄ = 0.01, fopt = 0.9876, and various ξd

values including ξopt [JJC: Figure 4.24]

• Two Examples of TMD systems

– The Landmark Tower, Yokohama, Japan

– Taipei 101, Taipei, Taiwan

Reference

E. Matta and A. De Stefano (2009), ”Robust design of mass-uncertain rolling-
pendulum TMDs for the seismic protection of buildings”, Mechanical Systems
and Signal Processing, 23: 127-147.
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Figure 9: Compound pendulum TMD system (340 tons) in the Landmark
Tower, Yokohama, Japan
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Figure 10: Simple pendulum TMD system (730 tons) in Taipei 101, Taipei,
Taiwan
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