

CIVE.5120 Structural Stability (3-0-3) 04/25/17

Buckling of Shells / Advanced Topics

Prof. Tzuyang Yu

Structural Engineering Research Group (SERG) Department of Civil and Environmental Engineering University of Massachusetts Lowell Lowell, Massachusetts

SERG

Outline

- Basic theory of shells
- Basic theory of thin shells
- Examples of shell structures
- Analysis of cylindrical shells
- Buckling of cylindrical shells
- Advanced Topics
 - The Routh-Hurwitz Theorem
 - The Lyapunov Theorems
 - The Lyapunov Stability Theorem
 - The Lyapunov Instability Theorem
 - Application of the Lyapunov Stability Theorems
 - Static and Dynamic Stability Problems
- Summary
- References

Thin Shells

Basic theory of shells

- Differences between plates and shells:
 - Shells carry membrane and bending forces → Shells are stronger than plates due to membrane forces.

- Basic theory of shells
 - Types of shells:

• Basic theory of shells

- The Flügge-Byrne Theory for Shells
 - Strains and displacements that arise within the shells are small.
 - Second-order or higher-order approximations of shells

- The Mindlin-Reissner Theory for Thick Shells

- Straight lines that are normal to the mid-surface remains straight but not necessarily perpendicular to the mid-surface
- Strains and displacements that arise within the shells are NOT small. → Shear strains are constant across the thickness of shells.
- The direct stress acting in the direction normal to the shell middle surface is negligible.

• Basic theory of shells

Effect of shell thickness

- Very thick shells: 3D effects
- Thick shells: stretching, bending and higher order transverse shear
- Moderately thick shells: stretching, bending and first order transverse shear
- Thin shells: stretching and bending energy considered but transverse shear neglected
- Very thin shells: dominated by stretching effects. Also called membranes.

- Approaches of Analysis

- Energy method
- Rayleigh-Ritz methods
- Galerkin method

Basic theory of shells

Stress distribution in a spherical dome (paraboloid of revolution): _

Variations of internal membrane forces in a spherical dome subjected to lateral wind loading

⁽Source: M. Farshad 1992)

• Basic theory of shells

- Effect of stress symmetricity in a parabolic dome:

• Basic theory of shells

- Effect of boundary/support conditions:

(a) Stress trajectories in a dome with continuous support

(b) Stress trajectories in a dome on discrete supports

Basic theory of shells

- Membrane behavior of axisymmetrically loaded domes:

(a) High rise dome with roller (vertical) support

(b) A low rise dome with hinged (vertical and horizontal) support

(c) A low rise dome with roller (vertical) support

(d) A low rise dome with roller (vertical) support and edge ring

• Basic theory of shells

- Stress trajectories of some shell structures:

• Basic theory of shells

- Stress trajectories of some shell structures:

Basic theory of thin shells

- Definition:
 - A thin shell is a curved slab whose thickness *h* is small compared with its other dimensions and compared with its principal radius of curvature.

(Source: A. Zingoni 1997)

• Basic theory of thin shells

- The Kirchhoff-Love Theory for Thin Shells (Love 1888)
 - The shell thickness is negligibly small in comparison with the least radius of curvature of the shell mid-surface.
 - Strains and displacements that arise within the shells are small.
 - Straight lines that are normal to the mid-surface prior to deformation remain straight and normal to the middle surface during deformation, and experience no change in length. → Analogous to Navier's hypothesis for beams – Bernoulli-Euler theory for beams
 - The direct stress acting in the direction normal to the shell middle surface is negligible.
 - First-order approximation of shells
 - → While usually convenient to use, the Kirchhoff-Love theory is strictly applicable to thin shells. It predicts incorrect behavior of shells near concentrated transverse loads or junctions.

• Basic theory of thin shells

- The Membrane Theory for Shells

• In some shells the stress couples are an order of magnitude smaller than the extensional and in-plane shear stress resultants.

 \rightarrow The transverse shear stress resultants are similarly small and may be neglected in the force equilibrium.

 \rightarrow Only valid for the shells whose one radius of curvature is finite.

- This class of shells may achieve force equilibrium through the action of in-plane forces alone. The state of stress in the shell is completely determined by equations of equilibrium. → The shell is statically determinate.
- The boundary conditions must also permit those shell edge displacements (translations and rotations) which are computed from the forces found by the membrane theory.

• Examples of shell structures

Fig. 1-3 (a) Pantheon, Rome, Italy, Dome Span = 43.4 m; Dome Rise = 21.6 m

Fig. 1-4 Hagia Sophia, Istanbul, Turkey. Dome Span = 31.9 m; Dome Rise = 13.8 m (Courtesy Dr. I. Mungan)

(Source: P.L. Gould 1998)

Examples of shell structures

Fig. 1-6(a) S. Maria Del Fiore, Florence, Italy. Dome Span = 42.4 m; Dome Rise = 36.6 m

(Source: P.L. Gould 1998)

Fig. 1-7 St. Peter's, Rome, Italy. Dome Span = 41.6 m; Dome Rise = 35.1 m

Examples of shell structures

Fig. 1-8 St. Paul's, London, England, Dome Span = 30.8 m; Dome Rise = 33.5 m

Fig. 2-8(g) Hyperboloid of Revolution, Planetarium, St. Louis, MO

(Source: P.L. Gould 1998)

• Examples of shell structures

Fig. 2-8(h) Open Cylindrical Roof, Airport, Barcelona, Spain

Fig. 2-8(j) Kingdome, Seattle, WA (Courtesy Dudley, Hardin & Yang, Inc.)

Fig. 2-8(i) Spherical Roof, Auditorium, Cambridge, MA

(Source: P.L. Gould 1998)

Examples of shell structures

Fig. 2-8(s) Spheroidal Water Tower (Courtesy Chicago Bridge & Iron Co.)

(Source: P.L. Gould 1998)

Troll A Platform, Norway

The 472-meter (1,548-foot) tall Troll A platform was towed to the offshore field in 1995, making it the largest structure humanity had ever moved at the time.

Analysis of Cylindrical Shells

- Definition:
 - A cylindrical shell can be defined as a curved slab taken form a full cylinder. The slab is bounded by two straight "longitudinal" edges parallel to the axis of the cylinder and by two curved transverse edges in planes perpendicular to the axis; the slab is curved in only one direction. The cylindrical shell is circular when the curvature is constant.
- Effects of shell edges on the load carrying behavior

(Source: M. Farshad 1992)

Analysis of Cylindrical Shells

– Stress resultants and stress couples:

Analysis of Cylindrical Shells

- Long shells $\rightarrow L/r \ge 2.5$
 - Line loads produce significant magnitudes of and , membrane forces become insignificant. Stresses can be estimated using the beam theory.
- Intermediate shells $\rightarrow 0.5 \le L/r < 2.5$
- Short shells $\rightarrow L/r < 0.5$
 - The line loads produce internal forces generally in the region near the longitudinal edge. Greater part of the shell behaves with membrane values.
- Line loads: Forces applied along the free edge.
- For long shells the stresses can be estimated closely by the beam theory (the shell is considered as a beam of a curved cross section between end supports).
 → Relative displacements within each transverse cross section are negligible.

Analysis of Cylindrical Shells

 Stress trajectories for a simply-supported cylindrical vault under uniform dead load

(Source: M. Farshad 1992)

- Governing equation of symmetric buckling of a cylindrical shell

- Radial displacements during buckling

(Source: Timoshenko and Gere 1961)

- Critical stress for thin shells

- Critical stress for thick shells

(Source: Timoshenko and Gere 1961)

• Buckling of Cylindrical Shells – Uniformly-distributed axial load

- Boundary conditions

Edge condition	Prescribed d.o.f.	Natural condition
Clamped	$w = \theta_n = \theta_s = 0$	None
Simply supported	w = 0	$M_n = 0$
Free	None	$Q=M_n=M_{ns}=0$

 θ_n , M_n – rotation and moment normal to edge

 θ_s , M_s - rotation and moment perpendicular to edge

(Source: N.A. Alfutov 2000)

(Source: N.A. Alfutov 2000)

(Source: N.A. Alfutov 2000)

(Source: N.A. Alfutov 2000)

- Buckling of Cylindrical Shells Uniformly-distributed axial load and concentrated Loads
 - When the shell has an even number of rigid supports which are uniformly distributed:

Buckling of Cylindrical Shells – Pure Bending

 Buckling of Cylindrical Shells – Torsion and transverse bending

The Routh-Hurwitz Theorem

- The Hurwitz Polynomials
- The Hurwitz Matrix
- Theorem
- Examples

• The Routh-Hurwitz Theorem

- The Hurwitz Polynomials

– The Hurwitz Matrix

- The Routh-Hurwitz Theorem
 - Theorem
 - A necessary and sufficient condition for the nth order polynomial to be a Hurwitz polynomial is that all of the principal minors $\Delta_1, \Delta_2, \dots \Delta_n$ of the Hurwitz matrix *H* to be positive.

$$\rightarrow \Delta_n = a_n \Delta_{n-1} > 0$$

The Routh-Hurwitz Theorem

Example #1: Damped pendulum problem

The Routh-Hurwitz Theorem

Example #2: Inverted damped pendulum problem

The Lyapunov Theorems

- The Lyapunov Stability Theorem
 - For discrete systems with governing equations of the form dx/dt = X(x),

consider a real continuous function V(x) (generalized velocity function or Lyapunov functional) with following properties:

- V(x) is positive (negative) definite if $V(x) > \theta$ (< θ) for all $x \neq \theta$ and $V(\theta) = \theta$.
- V(x) is positive (negative) semi-definite if $V(x) \ge \theta \ (\le \theta)$ and it can vanish also for some $x \ne \theta$.
- -V(x) is indefinite if it can assume both positive and negative values in the domain of interest.

The Lyapunov Theorems

- The Lyapunov Stability Theorem
 - If there exists for the system a positive (negative) definite V(x)whose total derivative dV(x)/dt is negative (positive) semi-definite along every trajectory of dx/dt = X(x), then the origin is Lyapunov stable.
 - If there exists for the system a positive (negative) definite V(x)whose total derivative dV(x)/dt is negative (positive) semi-definite along every trajectory of dx/dt = X(x), then the trivial solution asymptotically Lyapunov stable.
 - If $V(x) > \theta$ and $V(x) \le \theta \rightarrow$ Lyapunov stable
 - If $V(x) < \theta$ and $V(x) \ge \theta \rightarrow$ Lyapunov stable

The Lyapunov Theorems

- The Lyapunov Instability Theorem
 - If there exists for the system a function V(x) whose total derivative dV(x)/dt is positive (negative) semi-definite along every trajectory of dx/dt = X(x), and if the function itself can assume positive (negative) values for arbitrarily small values of x, then the trivial solution is Lyapunov unstable.
 - If $V(x) < \theta$ and $V(x) \le \theta \rightarrow$ Lyapunov unstable
 - If $V(x) > \theta$ and $V(x) \ge \theta \rightarrow Lyapunov$ unstable
- The use of Lyapunov's function is Lyapunov's Direct (Second) Method.

- Application of the Lyapunov Stability Theorems
 - Example #3 (Static Stability): Rigid bar-spring system

- Application of the Lyapunov Stability Theorems
 - Example #4 (Dynamic Stability): Spring-mass-damper system with a pendulum

- Application of the Lyapunov Stability Theorems
 - Example #5 (Dynamic Stability): The van del Pol equation

- Application of the Lyapunov Stability Theorems
 - Example #6 (Dynamic Stability): Turbulent flow in a channel

The Lyapunov Stability Theorems

- Guideline for deriving Lyapunov's functionals:
 - For mass-dependent systems,

• For mass-independent systems,

Summary

- In the linear theory of shells the governing equations may be rendered hyperbolic as a consequence of geometrical properties of the shell surface.
- Although shells are efficient structures for loading, the rapid change in geometry after buckling and consequent decrease of load capacity can lead to catastrophic collapse.
- Boundary/support conditions can significantly change the stress distribution within shell structures.
- The Kirchhoff-Love theory is usually used for thin shells subjected to uniformly-distributed loads.
- Lyapunov's Direct (Second) Method is based on Dirichlet's proof of Lagrange's Theorem on the stability of equilibrium of a system.
- Lyapunov's functionals have a close relationship with energy functions.
- The way to derive Lyapunov's functionals is not strictly formulated; sometimes the Lyapunov's functional for a system has not been defined.
- The Lyapunov stability theorems can be applied to both static and dynamic stability problems.

References

- Timoshenko, S.P., J.M. Gere (1961). *Theory of Elastic Stability*, 2nd ed., McGraw-Hill, New York, NY.
- Timoshenko, S.P., S. Woinowsky-Krieger (1959). *Theory of Plates and Shells*, McGraw–Hill, New York, NY.
- Gould, P. L. (1998). *Analysis of Plates and Shells*. Prentice Hall, NJ.
- Zingoni A. (1997). Shell Structures in Civil and Mechanical Engineering: Theory and Closed-Form Analytical Solutions. Thomas Telford Publishing (UK Institution of Civil Engineers), London, UK.
- Farshad, M. (1992). Design and Analysis of Shell Structures. Springer, NY.
- Love, A.E.H. (1888). On the small free vibrations and deformations of thin elastic shells, *Phil. Trans. Royal Soc. London, Series A*, **179**, 491-546.
- Ventsel, E., T. Krauthammer (2001). *Thin Plates and Shells*, Marcel Dekker, New York, NY.
- Simmonds, J.G., J.E. Mann Jr., (1986), A First Look at Perturbation Theory, 2nd ed., Dover, Mineola, NY.