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Thin Shells

Basic theory of shells
— Differences between plates and shells:

« Shells carry membrane and bending forces - Shells are stronger than
plates due to membrane forces.
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Shells

« Basic theory of shells
— Types of shells:

I Circular
cylinder -1 ©
Paraboloid of | . _
revolution Elliptic - ; (CJOW:euIar
paraboloid cone
Hyperboloid ]
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of revolution
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paraboloid

(Source: P.L. Gould 1998)
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Shells

« Basic theory of shells

— The Fliigge-Byrne Theory for Shells
« Strains and displacements that arise within the shells are small.
« Second-order or higher-order approximations of shells

— The Mindlin-Reissner Theory for Thick Shells
« Straight lines that are normal to the mid-surface remains straight but not necessarily
perpendicular to the mid-surface
« Strains and displacements that arise within the shells are NOT small. > Shear strains
are constant across the thickness of shells.
» The direct stress acting in the direction normal to the shell middle surface is negligible.



Shells

Basic theory of shells
— Effect of shell thickness

Very thick shells: 3D effects

Thick shells: stretching, bending and higher order transverse shear

Moderately thick shells: stretching, bending and first order transverse shear

Thin shells: stretching and bending energy considered but transverse shear neglected
Very thin shells: dominated by stretching effects. Also called membranes.

— Approaches of Analysis

Energy method
Rayleigh-Ritz methods
Galerkin method



Shells

« Basic theory of shells
— Stress distribution in a spherical dome (paraboloid of revolution):

Variations of internal membrane
forces in a spherical dome
subjected to lateral wind loading
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(Source: M. Farshad 1992)
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Shells

« Basic theory of shells
— Effect of stress symmetricity in a parabolic dome:

axis of revolution

meridional direction

(a) Dome with non-axisymmetric load (b) Dome with axisymmetric load

(Source: M. Farshad 1992)
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Shells

Basic theory of shells
— Effect of boundary/support conditions:

(a) Stress trajectories in a dome with (b) Stress trajectories in a dome on
continuous support discrete supports

(Source: M. Farshad 1992)
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Shells

« Basic theory of shells
— Membrane behavior of axisymmetrically loaded domes:

(a) High rise dome with (b) A low rise dome with (c) Alow rise dome with (d) A low rise dome with
roller (vertical) support hinged (vertical and roller (vertical) support roller (vertical) support
horizontal) support and edge ring

(Source: M. Farshad 1992)
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Shells

Basic theory of shells
— Stress trajectories of some shell structures:

(Source: M. Farshad 1992)
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Shells

« Basic theory of shells
— Stress trajectories of some shell structures:

(Source: M. Farshad 1992)
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Shells

Basic theory of thin shells

— Definition:

« A thin shell is a curved slab whose
thickness h is small compared with its

other dimensions and compared with its

principal radius of curvature.

(Source: A. Zingoni 1997)
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(Source: P.L. Gould 1998)
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Shells

« Basic theory of thin shells

— The Kirchhoff-Love Theory for Thin Shells (Love 1888)

« The shell thickness is negligibly small in comparison with the least radius of curvature
of the shell mid-surface.

» Strains and displacements that arise within the shells are small.

« Straight lines that are normal to the mid-surface prior to deformation remain straight
and normal to the middle surface during deformation, and experience no change in
length. = Analogous to Navier’s hypothesis for beams — Bernoulli-Euler theory for
beams

« The direct stress acting in the direction normal to the shell middle surface is negligible.
» First-order approximation of shells

- While usually convenient to use, the Kirchhoff-Love theory is strictly applicable to thin
shells. It predicts incorrect behavior of shells near concentrated transverse loads or
junctions.
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Shells

Basic theory of thin shells
— The Membrane Theory for Shells

In some shells the stress couples are an order of magnitude smaller than the
extensional and in-plane shear stress resultants.

- The transverse shear stress resultants are similarly small and may be neglected in
the force equilibrium.

- Only valid for the shells whose one radius of curvature is finite.

This class of shells may achieve force equilibrium through the action of in-plane forces
alone. The state of stress in the shell is completely determined by equations of
equilibrium. = The shell is statically determinate.

The boundary conditions must also permit those shell edge displacements
(translations and rotations) which are computed from the forces found by the
membrane theory.

15



Shells

« Examples of shell structures

Fig. 1-4 Hagia Sophia, Istanbul, Turkey. Dome Span = 31.9 m; Dome Rise = 13.8 m (Courtesy
Dr. I. Mungan)

Fig. 1-3(a) Pantheon, Rome, Italy, Dome Span = 43.4 m; Dome Rise = 21.6 m

(Source: P.L. Gould 1998)
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Shells

« Examples of shell structures

(Source: P.L.
Gould 1998)

Fig. 1-6(a) S. Maria Del Fiore, Florence, Italy. Dome Span = 42.4 m; Dome Rise = 36.6 m Fig. 1-7 St. Peter’s, Rome, Italy. Dome Span = 41.6 m; Dome Rise = 35.1 m
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Shells

 Examples of shell structures

(Source: P.L.
Gould 1998)

Fig. 1-8 St. Paul’s, London, England, Dome Span = 30.8 m; Dome Rise = 33.5 m Fig. 2-8(g) Hyperboloid of Revolution, Planetarium, St. Louis, MO
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Shells

Fig. 2-8(j) Kingdome, Seattle, WA (Courtesy Dudley, Hardin & Yang, Inc.)

(Source: P.L.
Gould 1998)

Fig. 2-8(k) Intersecting Barrel Shells, Airport, St. Louis, MO

Fig. 2-8()) Spherical Roof, Auditorium, Cambridge, MA
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Shells

Fig. 2-8(t) Column-Supported Spherical Tanks (Courtesy Chicago Bridge & Iron Co.)

Fig. 2-8(s) Spheroidal Water Tower (Courtesy Chicago Bridge & Iron Co.) (SOUI’CGZ P.L. Gould 1 998)
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Shells

Troll A Platform, Norway

The 472-meter (1,548-foot) tall Troll A platform was towed
to the offshore field in 1995, making it the largest
structure humanity had ever moved at the time.
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Shells

Analysis of Cylindrical Shells
— Definition:
« A cylindrical shell can be defined as a curved slab taken form a full cylinder. The slab is
bounded by two straight “longitudinal” edges parallel to the axis of the cylinder and by

two curved transverse edges in planes perpendicular to the axis; the slab is curved in
only one direction. The cylindrical shell is circular when the curvature is constant.

— Effects of shell edges on the load carrying behavior

(Source: M. Farshad 1992)
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Shells

« Analysis of Cylindrical Shells

— Stress resultants and stress couples:

* There are ten unknowns e
in the unit cell of shells; (N,, '
Ny Ny Ny, (Q Q). (M,
M; M,; M;,). > The
problem is statically N,
indeterminate.
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Shells

Analysis of Cylindrical Shells

Long shells 2> L#>2.5

+ Line loads produce significant magnitudes of and , membrane forces become
insignificant. Stresses can be estimated using the beam theory.

Intermediate shells 2 0.5<L/#<2.5

Short shells 2 L/ < 0.5

« The line loads produce internal forces generally in the region near the longitudinal
edge. Greater part of the shell behaves with membrane values.

Line loads: Forces applied along the free edge.

For long shells the stresses can be estimated closely by the beam theory (the
shell is considered as a beam of a curved cross section between end supports).
- Relative displacements within each transverse cross section are negligible.
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Shells

« Analysis of Cylindrical Shells

— Stress trajectories for a simply-supported cylindrical vault under uniform
dead load

(Source: M. Farshad 1992)
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Shells

« Buckling of Cylindrical Shells — Uniformly-distributed axial load

— Governing equation of symmetric buckling of a cylindrical shell

— Radial displacements during buckling

(Source: Timoshenko and Gere 1961)
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Shells

« Buckling of Cylindrical Shells — Uniformly-distributed axial load

— Ciritical stress for thin shells Nx N.x
/
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— Ciritical stress for thick shells :‘ s L
]

i

QA o Q :

mm’fl

Nx N

(Source: Timoshenko and Gere 1961)
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Shells

« Buckling of Cylindrical Shells — Uniformly-distributed axial load

— Boundary conditions

Edge condition Prescribed d.o.f. Natural condition
Clamped w=0,=0,=0 None

Simply supported w=0 M,=0

Free None O=M,=M,. =0

8,, M, — rotation and moment normal to edge
8., M — rotation and moment perpendicular to edge
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Shells

« Buckling of Cylindrical Shells — Uniformly-distributed axial load
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Shells

« Buckling of Cylindrical Shells — Uniformly-distributed axial load
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Shells

Buckling of Cylindrical Shells — Uniformly-distributed axial load
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Shells

« Buckling of Cylindrical Shells — Uniformly-distributed axial load
and concentrated loads

(Source: N.A. Alfutov 2000)

32



Shells

Buckling of Cylindrical Shells — Uniformly-distributed axial load
and concentrated Loads

— When the shell has an even number of rigid supports which are uniformly
distributed:

(Source: N.A. Alfutov 2000)

33



Shells

« Buckling of Cylindrical Shells — Pure Bending
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Shells

* Buckling of Cylindrical Shells — Torsion and transverse
bending

(b)

(Source: N.A. Alfutov 2000)
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Advanced Topics

The Routh-Hurwitz Theorem
— The Hurwitz Polynomials
— The Hurwitz Matrix
— Theorem
— Examples
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Advanced Topics

The Routh-Hurwitz Theorem
— The Hurwitz Polynomials

— The Hurwitz Matrix
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Advanced Topics

The Routh-Hurwitz Theorem
— Theorem

« A necessary and sufficient condition for the nt" order
polynomial to be a Hurwitz polynomial is that all of the
principal minors A, A,, ... A, of the Hurwitz matrix H to be
positive.

2> A, =a,A,,>0
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Advanced Topics

 The Routh-Hurwitz Theorem
— Example #1: Damped pendulum problem
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Advanced Topics

The Routh-Hurwitz Theorem
— Example #2: Inverted damped pendulum problem
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Advanced Topics

 The Lyapunov Theorems

— The Lyapunov Stability Theorem

» For discrete systems with governing equations of the form
dx/dt = X(x),
consider a real continuous function V(x) (generalized velocity
function or Lyapunov functional) with following properties:
— V(x) is positive (negative) definite if V(x) >0 (< 0) for all x # 0 and V(0) =
0.
— V(x) is positive (negative) semi-definite if V(x) > 0 (< 0) and it can vanish
also for some x # 0.

— V(x) is indefinite if it can assume both positive and negative values in
the domain of interest.

41



Advanced Topics

« The Lyapunov Theorems

— The Lyapunov Stability Theorem

« If there exists for the system a positive (negative) definite V(x)
whose total derivative dV(x)/dt is negative (positive) semi-definite

along every trajectory of dx/dt = X(x), then the origin is Lyapunov
Stable.

« If there exists for the system a positive (negative) definite V(x)
whose total derivative dV(x)/dt is negative (positive) semi-definite
along every trajectory of dx/dt = X(x), then the trivial solution
asymptotically Lyapunov stable.

* If V(x) >0 and V(x) <0 ->Lyapunov stable
« If V(x) <0 and V(x) > 0 2>Lyapunov stable
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Advanced Topics

The Lyapunov Theorems

— The Lyapunov Instability Theorem

« If there exists for the system a function V(x) whose total derivative
dV(x)/dt is positive (negative) semi-definite along every trajectory of
dx/dt = X(x), and if the function itself can assume positive (negative)
values for arbitrarily small values of x, then the trivial solution is
Lyapunov unstable.

* If V(x) <0 and V(x) <0 ->Lyapunov unstable
* If V(x) >0 and V(x) > 0 »>Lyapunov unstable

— The use of Lyapunov’s function is Lyapunov’s Direct (Second) Method.
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Advanced Topics

« Application of the Lyapunov Stability Theorems
— Example #3 (Static Stability): Rigid bar-spring system
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Advanced Topics

« Application of the Lyapunov Stability Theorems

— Example #4 (Dynamic Stability): Spring-mass-damper system
with a pendulum
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Advanced Topics

Application of the Lyapunov Stability Theorems
— Example #5 (Dynamic Stability): The van del Pol equation
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Advanced Topics

Application of the Lyapunov Stability Theorems
— Example #6 (Dynamic Stability): Turbulent flow in a channel
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Advanced Topics

The Lyapunov Stability Theorems

— Guideline for deriving Lyapunov’s functionals:

* For mass-dependent systems,

« For mass-independent systems,
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Summary

In the linear theory of shells the governing equations may be rendered
hyperbolic as a consequence of geometrical properties of the shell surface.

Although shells are efficient structures for loading, the rapid change in
geometry after buckling and consequent decrease of load capacity can lead
to catastrophic collapse.

Boundary/support conditions can significantly change the stress distribution
within shell structures.

The Kirchhoff-Love theory is usually used for thin shells subjected to
uniformly-distributed loads.

Lyapunov’s Direct (Second) Method is based on Dirichlet’s proof of
Lagrange’s Theorem on the stability of equilibrium of a system.

Lyapunov’s functionals have a close relationship with energy functions.

The way to derive Lyapunov’s functionals is not strictly formulated,;
sometimes the Lyapunov’s functional for a system has not been defined.

The Lyapunov stability theorems can be applied to both static and dynamic
stability problems.
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