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•  Basic theory of shells 
–  Differences between plates and shells: 

•  Shells carry membrane and bending forces à Shells are stronger than 
plates due to membrane forces. 
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Thin Shells 

(Source: P.L. Gould 1998)  

Beams 

Arches Plates Shells 



4 

Shells 

(Source: P.L. Gould 1998)  

•  Basic theory of shells 
–  Types of shells: 

Paraboloid of 
revolution Elliptic 

paraboloid 

Hyperboloid 
of revolution 

Hyperbolic 
paraboloid 

Circular 
cylinder 

Circular 
cone 



•  Basic theory of shells 
–  The Flügge-Byrne Theory for Shells 

•  Strains and displacements that arise within the shells are small. 
•  Second-order or higher-order approximations of shells 

–  The Mindlin-Reissner Theory for Thick Shells 
•  Straight lines that are normal to the mid-surface remains straight but not necessarily 

perpendicular to the mid-surface 
•  Strains and displacements that arise within the shells are NOT small. à Shear strains 

are constant across the thickness of shells. 
•  The direct stress acting in the direction normal to the shell middle surface is negligible. 
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Shells 



•  Basic theory of shells 
–  Effect of shell thickness 

•  Very thick shells: 3D effects 
•  Thick shells: stretching, bending and higher order transverse shear 
•  Moderately thick shells: stretching, bending and first order transverse shear 
•  Thin shells: stretching and bending energy considered but transverse shear neglected 
•  Very thin shells: dominated by stretching effects. Also called membranes. 

–  Approaches of Analysis  
•  Energy method 
•  Rayleigh-Ritz methods 
•  Galerkin method 
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Shells 
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Shells 

(Source: M. Farshad 1992)  

•  Basic theory of shells 
–  Stress distribution in a spherical dome (paraboloid of revolution): 

Variations of internal membrane 
forces in a spherical dome 
subjected to lateral wind loading 

Stress trajectories in a spherical 
dome subjected to lateral wind 
loading 
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Shells 

(Source: M. Farshad 1992)  

•  Basic theory of shells 
–  Effect of stress symmetricity in a parabolic dome: 

(a) Dome with non-axisymmetric load (b) Dome with axisymmetric load 
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Shells 

(Source: M. Farshad 1992)  

•  Basic theory of shells 
–  Effect of boundary/support conditions: 

(a) Stress trajectories in a dome with 
continuous support 

(b) Stress trajectories in a dome on 
discrete supports  
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Shells 

(Source: M. Farshad 1992)  

•  Basic theory of shells 
–  Membrane behavior of axisymmetrically loaded domes: 

(a) High rise dome with 
roller (vertical) support 

(b) A low rise dome with 
hinged (vertical and 
horizontal) support 

(c) A low rise dome with 
roller (vertical) support 

(d) A low rise dome with 
roller (vertical) support 
and edge ring 



11 

Shells 

•  Basic theory of shells 
–  Stress trajectories of some shell structures: 

(Source: M. Farshad 1992)  
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Shells 

•  Basic theory of shells 
–  Stress trajectories of some shell structures: 

(Source: M. Farshad 1992)  



•  Basic theory of thin shells 
–  Definition: 

•  A thin shell is a curved slab whose 
thickness h is small compared with its 
other dimensions and compared with its 
principal radius of curvature. 
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Shells 

(Source: A. Zingoni 1997)  (Source: P.L. Gould 1998)  



•  Basic theory of thin shells 
–  The Kirchhoff-Love Theory for Thin Shells (Love 1888) 

•  The shell thickness is negligibly small in comparison with the least radius of curvature 
of the shell mid-surface. 

•  Strains and displacements that arise within the shells are small. 

•  Straight lines that are normal to the mid-surface prior to deformation remain straight 
and normal to the middle surface during deformation, and experience no change in 
length. à Analogous to Navier’s hypothesis for beams – Bernoulli-Euler theory for 
beams 

•  The direct stress acting in the direction normal to the shell middle surface is negligible.  

•  First-order approximation of shells 

à While usually convenient to use, the Kirchhoff-Love theory is strictly applicable to thin 
shells. It predicts incorrect behavior of shells near concentrated transverse loads or 
junctions.  
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Shells 



•  Basic theory of thin shells 
–  The Membrane Theory for Shells 

•  In some shells the stress couples are an order of magnitude smaller than the 
extensional and in-plane shear stress resultants.  
 à The transverse shear stress resultants are similarly small and may be neglected in 
the force equilibrium.  
 à Only valid for the shells whose one radius of curvature is finite.  

•  This class of shells may achieve force equilibrium through the action of in-plane forces 
alone. The state of stress in the shell is completely determined by equations of 
equilibrium. à The shell is statically determinate.  

•  The boundary conditions must also permit those shell edge displacements 
(translations and rotations) which are computed from the forces found by the 
membrane theory. 
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Shells 
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Shells 

(Source: P.L. Gould 1998)  

•  Examples of shell structures 
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Shells 

(Source: P.L. 
Gould 1998)  

•  Examples of shell structures 
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Shells 

(Source: P.L. 
Gould 1998)  

•  Examples of shell structures 
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Shells 

(Source: P.L. 
Gould 1998)  

•  Examples of shell structures 
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Shells 

(Source: P.L. Gould 1998)  

•  Examples of shell structures 
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Troll A Platform, Norway  
 

The 472-meter (1,548-foot) tall Troll A platform was towed 
to the offshore field in 1995, making it the largest 
structure humanity had ever moved at the time. 

Shells 



•  Analysis of Cylindrical Shells 
–  Definition: 

•  A cylindrical shell can be defined as a curved slab taken form a full cylinder. The slab is 
bounded by two straight “longitudinal” edges parallel to the axis of the cylinder and by 
two curved transverse edges in planes perpendicular to the axis; the slab is curved in 
only one direction. The cylindrical shell is circular when the curvature is constant.  

–  Effects of shell edges on the load carrying behavior 

22 

Shells 

(Source: M. Farshad 1992)  



•  Analysis of Cylindrical Shells 
–  Stress resultants and stress couples: 
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Shells 

•  There are ten unknowns 
in the unit cell of shells; (Nx, 
Nf, Nxf,  Nf x,), (Qx, Qf ), (Mx,  
Mf,  Mxf,  Mf x). à The 
problem is statically 
indeterminate.  



•  Analysis of Cylindrical Shells 
–  Long shells à L/r ≥ 2.5 

•  Line loads produce significant magnitudes of and , membrane forces become 
insignificant. Stresses can be estimated using the beam theory. 

–  Intermediate shells à 0.5 ≤ L/r < 2.5  
–  Short shells à L/r < 0.5 

•  The line loads produce internal forces generally in the region near the longitudinal 
edge. Greater part of the shell behaves with membrane values. 

–  Line loads: Forces applied along the free edge. 

–  For long shells the stresses can be estimated closely by the beam theory (the 
shell is considered as a beam of a curved cross section between end supports). 
à Relative displacements within each transverse cross section are negligible.   
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Shells 



•  Analysis of Cylindrical Shells 
–  Stress trajectories for a simply-supported cylindrical vault under uniform 

dead load 
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Shells 

(Source: M. Farshad 1992)  



•  Buckling of Cylindrical Shells – Uniformly-distributed axial load 
–  Governing equation of symmetric buckling of a cylindrical shell 

 
 
 

–  Radial displacements during buckling  
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Shells 

(Source: Timoshenko and Gere 1961)  



•  Buckling of Cylindrical Shells – Uniformly-distributed axial load 
–  Critical stress for thin shells 

–  Critical stress for thick shells 
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Shells 

(Source: Timoshenko and Gere 1961)  
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Shells 

•  Buckling of Cylindrical Shells – Uniformly-distributed axial load 
–  Boundary conditions 



(a) Axisymmetric buckling  
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Shells 

•  Buckling of Cylindrical Shells – Uniformly-distributed axial load 

(Source: N.A. Alfutov 2000)  



(b) Post-buckling shape of a 
cylindrical shell 
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Shells 

•  Buckling of Cylindrical Shells – Uniformly-distributed axial load 

(Source: N.A. Alfutov 2000)  



(c) Buckling of a long cylindrical shell 
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Shells 

•  Buckling of Cylindrical Shells – Uniformly-distributed axial load 

(Source: N.A. Alfutov 2000)  
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Shells 

•  Buckling of Cylindrical Shells – Uniformly-distributed axial load 
and concentrated loads 

(Source: N.A. Alfutov 2000)  



•  Buckling of Cylindrical Shells – Uniformly-distributed axial load 
and concentrated Loads 

–  When the shell has an even number of rigid supports which are uniformly 
distributed: 
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Shells 

(Source: N.A. Alfutov 2000)  



•  Buckling of Cylindrical Shells – Pure Bending 

34 

Shells 

(Source: N.A. Alfutov 2000)  



•  Buckling of Cylindrical Shells – Torsion and transverse 
bending 
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Shells 

(Source: N.A. Alfutov 2000)  
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Advanced Topics 

•  The Routh-Hurwitz Theorem 
–  The Hurwitz Polynomials 
–  The Hurwitz Matrix 
–  Theorem 
–  Examples 
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Advanced Topics 

•  The Routh-Hurwitz Theorem 
–  The Hurwitz Polynomials 

–  The Hurwitz Matrix 
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Advanced Topics 

•  The Routh-Hurwitz Theorem 
–  Theorem 

•  A necessary and sufficient condition for the nth order 
polynomial to be a Hurwitz polynomial is that all of the 
principal minors Δ1, Δ2,  … Δn of the Hurwitz matrix H to be 
positive. 

  
à Δn = anΔn-1  > 0 
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Advanced Topics 

•  The Routh-Hurwitz Theorem 
–  Example #1: Damped pendulum problem 

θ	
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Advanced Topics 

•  The Routh-Hurwitz Theorem 
–  Example #2: Inverted damped pendulum problem 

θ	
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Advanced Topics 

•  The Lyapunov Theorems 
–  The Lyapunov Stability Theorem 

•  For discrete systems with governing equations of the form 
 dx/dt = X(x), 
 consider a real continuous function V(x) (generalized velocity 
function or Lyapunov functional) with following properties: 
–  V(x) is positive (negative) definite if V(x) > 0 (< 0) for all x ≠ 0 and V(0) = 

0. 
–  V(x) is positive (negative) semi-definite if V(x) ≥ 0 (≤ 0) and it can vanish 

also for some x ≠ 0.  
–  V(x) is indefinite if it can assume both positive and negative values in 

the domain of interest.  
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Advanced Topics 

•  The Lyapunov Theorems 
–  The Lyapunov Stability Theorem 

•  If there exists for the system a positive (negative) definite V(x) 
whose total derivative dV(x)/dt is negative (positive) semi-definite 
along every trajectory of dx/dt = X(x), then the origin is Lyapunov 
stable.  

•  If there exists for the system a positive (negative) definite V(x) 
whose total derivative dV(x)/dt is negative (positive) semi-definite 
along every trajectory of dx/dt = X(x), then the trivial solution 
asymptotically Lyapunov stable.  

•  If V(x) > 0 and V(x) ≤ 0 àLyapunov stable 
•  If V(x) < 0 and V(x) ≥  0 àLyapunov stable 
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Advanced Topics 

•  The Lyapunov Theorems 
–  The Lyapunov Instability Theorem 

•  If there exists for the system a function V(x) whose total derivative 
dV(x)/dt is positive (negative) semi-definite along every trajectory of 
dx/dt = X(x), and if the function itself can assume positive (negative) 
values for arbitrarily small values of x, then the trivial solution is 
Lyapunov unstable.  

•  If V(x) < 0 and V(x) ≤ 0 àLyapunov unstable 
•  If V(x) > 0 and V(x) ≥  0 àLyapunov unstable 

–  The use of Lyapunov’s function is Lyapunov’s Direct (Second) Method.  
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Advanced Topics 

•  Application of the Lyapunov Stability Theorems 
–  Example #3 (Static Stability): Rigid bar-spring system 

P 

k 

B 

A 
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Advanced Topics 

•  Application of the Lyapunov Stability Theorems 
–  Example #4 (Dynamic Stability): Spring-mass-damper system 

with a pendulum 

k 
x 

θ	



c 
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Advanced Topics 

•  Application of the Lyapunov Stability Theorems 
–  Example #5 (Dynamic Stability): The van del Pol equation 
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Advanced Topics 

•  Application of the Lyapunov Stability Theorems 
–  Example #6 (Dynamic Stability): Turbulent flow in a channel 
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Advanced Topics 

•  The Lyapunov Stability Theorems 
–  Guideline for deriving Lyapunov’s functionals: 

•  For mass-dependent systems, 

•  For mass-independent systems, 
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Summary 

•  In the linear theory of shells the governing equations may be rendered 
hyperbolic as a consequence of geometrical properties of the shell surface. 

•  Although shells are efficient structures for loading, the rapid change in 
geometry after buckling and consequent decrease of load capacity can lead 
to catastrophic collapse.  

•  Boundary/support conditions can significantly change the stress distribution 
within shell structures.  

•  The Kirchhoff-Love theory is usually used for thin shells subjected to 
uniformly-distributed loads. 

•  Lyapunov’s Direct (Second) Method is based on Dirichlet’s proof of 
Lagrange’s Theorem on the stability of equilibrium of a system. 

•  Lyapunov’s functionals have a close relationship with energy functions. 
•  The way to derive Lyapunov’s functionals is not strictly formulated; 

sometimes the Lyapunov’s functional for a system has not been defined.  
•  The Lyapunov stability theorems can be applied to both static and dynamic 

stability problems.  
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