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INTRODUCTION

Mechanical functions of protein fibers such as fibronectin,

fibrin fibers, microtubules, and actin filaments are important in

cytoskeletal support and cell motility,1–3 in cell adhesion and

the formation of the extracellular matrix,4–7 and in blood clot-

ting.8–10 Physical properties of viral capsids of plant and animal

viruses,11–13 retroviruses,14 and bacteriophages,15,16 and the

transitions between their stable and unstable states determine the

life cycle of many viruses, including virus maturation, and infec-

tion of cells.17 Single-molecule techniques, such as atomic force

microscopy (AFM) and laser tweezer-based force spectroscopy,

utilize either a time-dependent mechanical force f(t) (force-ramp)

or a constant force f 5 f0 (force-clamp) to induce conformational

transitions in biomolecules. These pioneering experiments have

been used to study the physical properties of protein fibers18–21

and viral capsids.15,16,22,23 Yet, these experiments yield results

that are nearly impossible to interpret without first having some a

priori information about their free energy landscape.9

All-atom molecular dynamics (MD) simulations are widely

used to access the submolecular behavior of biomolecules.24–26

However, because all-atomic modeling is currently limited to a

10–50 nm length scale and 0.1–10 ls duration,27–29 these meth-

ods allow mostly for the theoretical exploration of equilibrium

properties of biomolecules, while reaching the biologically impor-

tant ms-s timescale becomes virtually impossible even for a small

system. In addition, to fully explore the free energy landscape

underlying a biological process of interest, one needs to generate

a statistically representative set of trajectories. One possibility is to

carry out MD simulations on many-core computer clusters, but it

requires tremendous computational resources and long central

processing unit (CPU) times. For example, it takes 800000 CPU

hours to obtain 20 short 1 ns MD trajectories for the southern
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ABSTRACT

Theoretical exploration of fundamental biological

processes involving the forced unraveling of multi-

meric proteins, the sliding motion in protein fibers

and the mechanical deformation of biomolecular

assemblies under physiological force loads is chal-

lenging even for distributed computing systems.

Using a Ca-based coarse-grained self organized poly-

mer (SOP) model, we implemented the Langevin

simulations of proteins on graphics processing units

(SOP-GPU program). We assessed the computa-

tional performance of an end-to-end application of

the program, where all the steps of the algorithm

are running on a GPU, by profiling the simulation

time and memory usage for a number of test sys-

tems. The �90-fold computational speedup on a

GPU, compared with an optimized central process-

ing unit program, enabled us to follow the dynam-

ics in the centisecond timescale, and to obtain the

force-extension profiles using experimental pulling

speeds (vf 5 1–10 lm/s) employed in atomic force

microscopy and in optical tweezers-based dynamic

force spectroscopy. We found that the mechanical

molecular response critically depends on the condi-

tions of force application and that the kinetics and

pathways for unfolding change drastically even

upon a modest 10-fold increase in vf. This implies

that, to resolve accurately the free energy landscape

and to relate the results of single-molecule experi-

ments in vitro and in silico, molecular simulations

should be carried out under the experimentally rel-

evant force loads. This can be accomplished in rea-

sonable wall-clock time for biomolecules of size as

large as 105 residues using the SOP-GPU package.
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bean mosaic virus, which contains as many as 4.5 million

atoms, on an SGI Altix 4700 cluster.30 These limitations

exclude computations as an investigative tool in the study

of a range of biological problems, such as the large defor-

mations of protein fibers, the formation of biomolecular

complexes and aggregates, and the mechanical failure of

viral capsids, for which experimental data are already

available, thereby rendering the direct comparison of the

results of experiments in vitro and in silico impossible.

Graphics processors have evolved over the last few years

into highly parallel, multithreaded computing devices.

Unlike mainstream processor architecture, graphics proc-

essing units (GPUs) devote the majority of their logic

units to performing actual calculations, rather than to

cache memory and flow control. Massive multithreading,

fast context switching, and high memory bandwidth ena-

ble GPUs to tolerate latencies associated with memory

calls and to run many computational cores simultaneously.

Programming tools for modern GPUs include several plat-

forms such as ATI Stream Computing,31 NVIDIA Com-

pute Unified Device Architecture (CUDA),32,33 and Open

Computing Language (OpenCL).34 Recent technological

advances in the throughput-oriented hardware architecture

of GPUs with extremely high peak arithmetic performance

have unleashed tremendous computational power that has

been utilized in a wide range of scientific applications,

including calculations of electronic structure, ab initio

quantum chemistry calculations, and quantum Monte

Carlo simulations among many others.35–39

There exist preliminary versions of standard packages

for MD simulations of proteins implemented on a GPU,

such as NAMD,28,40,41 Gromacs,42 ACEMD,43,44 and

other applications.45–47 However, due to inherent limi-

tations in the scales of length and time, all-atom MD

simulation methods, including those that are imple-

mented on GPUs, cannot be applied to study the global

unfolding transitions in biomolecules using experimental

force loads f(t) 5 rft, where rf 5 jvf is the force-loading

rate, and j and vf are the cantilever spring constant and

the pulling speed, respectively. For example, in steered

MD (SMD) simulations of proteins pulling speeds are

106–107-times faster than their experimental values (vf �
1–10 lm/s).27,30 Under these far-from-equilibrium con-

ditions, the kinetics, molecular mechanisms, and unfold-

ing pathways observed in the pulling simulations at vf �
106–108 lm/s and in the dynamic force measurements at

vf � 1–10 lm/s might differ. At the theory level, one

possibility is to adopt a coarse-grained description based

on simplified models of proteins and Langevin Dynamics

simulations.48–50 Indeed, topology and the overall struc-

ture (geometry), rather than the atomic details, govern

the force-driven unfolding of multimeric proteins and

the large-scale mechanical deformation of protein fibers

and viral capsids.51

We have developed and tested the GPU-based imple-

mentation of Langevin simulations using a Ca-based self

organized polymer (SOP) coarse-grained model of the

protein chain.52 Previous studies have shown that the

SOP model describes well the mechanical properties of

proteins, including the Green Fluorescent Protein,53 the

tubulin dimer,54 and kinesin.55 The SOP-model has also

been employed to explore the kinetics and to map the

free energy landscape of various biomolecules such as the

tetrahymena ribozyme,52 riboswitch aptamers,56

GroEL,57 DHFR,58 protein kinase A,59 and myosin V.60

Here we show that the combination of the SOP model

and GPU-based computations (SOP-GPU program) ena-

bles one to carry out dynamic force measurements for a

range of proteins in silico using experimental pulling

speeds, to compare directly the experimental data with

the simulation output, and, thus, to interpret the experi-

mental results. To develop the SOP-GPU program, we

used CUDA, a parallel computing environment (a dialect

of the C and C11 programming languages) that pro-

vides a high level software platform for general purpose

scientific applications. In what follows, we report on our

implementation of the SOP-GPU package on the NVI-

DIA graphics card GeForce GTX 295.

First, we describe the methodology behind the GPU-

based Langevin simulations, including the numerical rou-

tines for generating pseudorandom numbers, construct-

ing Verlet lists, and integrating forward Langevin equa-

tions of motion. Second, we compare the results of CPU-

and GPU-based simulations of the mechanical unfolding

for a test system, the all-b-strand WW domain, and we

assess the accuracy of the numerical integration. Next, we

carry out pulling simulations for the C2A domain from

human synaptotagmin (Syt1), and for the gC chain and

the double-D fragment from human fibrinogen (Fb). We

compare directly the force-extension profiles, obtained

using the time-dependent force protocol and pulling

speeds vf 5 2.5 and 25 lm/s, with the experimental force

spectra, and with the force-extension profiles generated

at 104–106-times faster pulling speeds used in all-atom

MD simulations. We show that the molecular mecha-

nism(s), the kinetics, and thermodynamics of the biome-

chanical unfolding reactions all change with the pulling

speed vf. We also discuss the results of SOP-GPU simula-

tions in terms of the simulation time, memory usage,

and the computational speedup (i.e., CPU time vs. GPU

time) for small proteins ([1000 residues), for fibrin

fibers ([4000 residues), and for a large-size protein

assembly—viral capsid HK97 (115,000 residues).

METHODS

GPU-based computations

The generally used CPUs have most of their logical ele-

ments dedicated to cache and flow control to employ

complex logic and to provide computational cores with

fast memory access. This makes a CPU capable of per-
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forming computations following a sequential workflow.

On a GPU, a large number of logical elements are

devoted to actual computations, while cache and flow

control are reduced to a small unit. These differences

enable GPUs to achieve high arithmetic unit density and

to perform the same computational procedure(s) simul-

taneously for all particles in a system. This is done by

using many independent threads of execution running

parallel calculations on different data sets.61 For example,

on a CPU, vector addition in M dimensions is performed

in a loop, where the components of the resulting vector

are computed one after another. On a GPU, this proce-

dure can be performed using M independent threads,

each of which computes just one component. Hence, on

a GPU, a vector sum is computed at a cost of one addi-

tion, whereas on a CPU this cost is multiplied by M.

Unlike computer clusters, where each core is capable of

following its own computational protocol, most GPUs

are based on the SIMD architecture (Single Instruction

Multiple Data), which mandates that an identical instruc-

tion stream be fed to an array of processing units.61

To achieve top performance on a GPU, the numerical

algorithms must be recast into a data-parallel form so

that computational threads run the same instruction

stream, but on different data. In addition, the task

should be compute-intensive so that, most of the time,

the GPU performs computations rather than reading and

writing data. Because GPUs differ from CPUs in several

fundamental ways, CPU-based methods for molecular

simulations of biomolecules cannot be easily translated

nor simply adapted to a GPU. Key architectural traits of

modern GPUs and CPUs are compared in the Supporting

Information (Section I). Yet, in molecular simulations,

the particle-particle interactions are described by the

same empirical potential energy function (force field),

and the dynamics is obtained by solving numerically the

same equations of motion for all particles. Hence, there

is a direct correspondence between the SIMD architecture

of a GPU at the hardware level and the numerical rou-

tines (software) used to follow the dynamics. It is then

possible to execute a ‘‘single instruction’’, that is, the cal-

culation of the potential energy, or the evaluation of

forces, or the generation of random forces, or the inte-

gration of the equations of motion, on ‘‘multiple data’’

sets (many particles) at the same time using several arith-

metic logic units (ALUs). This makes molecular simula-

tions a natural candidate for implementation on a GPU.

Langevin dynamics simulations on a GPU

In this section, we describe the particle based and the

interacting pair based methods for the parallel computa-

tion of potentials and forces due to binary (particle-parti-

cle) interactions. We outline the numerical procedures for

the generation of Verlet lists and random forces, and for

the numerical integration of Langevin equations of

motion. A detailed description of the numerical algo-

rithms can be found in Supporting Information (Section

II). The algorithm decomposition, along with the work-

load division between the GPU device and the CPU, is dia-

grammed in Supporting Information Figure 1, where we

displayed the computational workflow on the CPU and on

the GPU, including operations on the data files for the

molecular topology and for the particle energies and coor-

dinates, and the data flow between the CPU DRAM and

the GPU global memory (host-GPU data transfer).

There are two main optimization strategies that allow

one to compute forces due to binary interactions. In the

first approach, all forces acting on one particle are com-

puted in one thread, which requires running N threads

Figure 1
Comparison of the results of pulling simulations for the WW-domain

(Table I) obtained on a GPU and on a CPU using the pulling speed

vf 5 2.5 l m/s. Panel a: Representative examples of the force spectrum

(force-extension curves). Panel b: The histograms of unfolding forces,

that is, the peak forces extracted from the force-extension curves,

constructed using the bin size of hf � 3.1 pN. Panel c: The time

dependence of the average temperature of the protein chain hkBT(t)i.
[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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to obtain the force values for all particles. We refer to

this procedure as the particle based parallelization

approach. The use of this approach requires the compu-

tation of the same force increment ~df , acting on the ith

and jth particles, twice in the ith and jth threads (Sup-

porting Information, Section II).47 In the interacting

pair based parallelization approach, force calculations are

performed for all (i,j)-pairs using P independent threads,

which equals the number of pairs of interacting particles.

Then, 2P force values are saved to different locations in

the GPU global memory. We pursued both optimization

strategies to exploit the data-parallel aspects of GPU-

based computing (Supporting Information, Section II).

The particle based parallelization approach

In this approach, described by Anderson et al.,47 N

independent threads run on a GPU concurrently, each

computing all the pair potentials for each particle and

summing all the force values (except for the random

force) to obtain the total force. Although the force

exerted on the i-th and j-th particles is computed

twice, the number of global memory calls is reduced

by a factor of 2N, and the time spent on recalculating

the same potential is compensated by the time saved

by not waiting to write/read the force data to/from the

GPU global memory (Supporting Information, Algo-

rithm 2). In Langevin simulations employing a native

state-centric approach, the information about the

covalent bonds and the native interactions, obtained

from the PDB (Protein Data Bank62) structure of a

protein, does not change. However, the information

about nonbonded (long-range) interactions, describing

the gradual attraction and the hardcore repulsion

between pairs of residues, needs to be updated from

time to time. The description of long-range interac-

tions is the most computationally demanding compo-

nent of the algorithm. A common approach is to take

advantage of the fact that long-range interactions van-

ish over some distance. This allows one to use pair lists

that include residues that are closer than some cutoff

distance (Verlet lists).63 Using the particle based paral-

lelization approach, Verlet lists can be easily regener-

ated on a GPU to accelerate the computation of the

potential energy function (Supporting Information,

Algorithm 3).

The interacting pair based parallelization approach

To avoid computing the two-body potentials on a

GPU twice, one can design a different algorithm, where

each computational thread calculates a single pair

potential for only two coupled residues. Forces exerted

on the interacting residues (in opposite directions) are

computed only once and all the forces exerted on each

particle are summed up to obtain the total force.

Although this approach requires additional memory

calls, it enables one to accelerate the simulations when

the number of residues N is close to the number of

ALUs on the GPU, and/or when the calculation of pair

potentials is computationally expensive. In this

approach, each thread computes the forces for just one

pair of residues, and the total number of threads equals

the number of interacting pairs for one potential energy

term (Supporting Information, Algorithm 4). This

allows one to avoid memory conflicts, but requires an

additional gathering kernel for the force summation

(Supporting Information, Algorithm 5). On a GPU with

Fermi architecture, thread safe addition of the force val-

ues helps remove the performance barriers associated

with multiple memory calls.

In the interacting pair based parallelization approach,

generating a Verlet list amounts to forming a vector of

all the pairs of coupled residues for one potential

energy term. On a GPU, constructing this vector is a

formidable task, since the exact position in the list, to

which the information about the next residue pair

should be saved, is not known. One possibility is to use

the atomicAdd(. . .) routine from C for CUDA,32 which

allows for integer addition in the GPU global memory

without running into memory conflicts even when

many threads attempt to access the same memory

address at the same time. However, when threads work

in parallel, identifying new pairs and saving them one

after another may result in a Verlet list that is not or-

dered according to the particle index. This might lead

to numerous noncoalescent memory reads and in an

inefficient utilization of the cache memory. Thus, to

obtain an ordered Verlet list, the list has to be sorted or

updated on a CPU. Our estimates show that it is more

efficient to compute interparticle distances on a GPU,

to copy them to the CPU DRAM, and then to generate

a new list.

Generation of random forces

Langevin simulations require a reliable source of

normally distributed (pseudo)random numbers, gi,a (a
5 x, y, and z), to compute the three components of

the Gaussian random force Gi,a 5 gi,a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTn=h

p
,

where n is the friction coefficient and h is the integration

time step. A random number generator (RNG) produces

a sequence of random numbers ui,a uniformly distributed

in the unit interval [0,1], which is then translated into a

sequence of normally distributed random numbers with

zero mean and unit variance (gi,a) using the Box-Mueller

transformation.64 While there exist stand alone imple-

mentations of good quality RNGs on a GPU,65 in Lange-

vin simulations an RNG should be incorporated into

the integration kernel to minimize the number of read/

write calls. To produce random numbers during the

numerical integration of Langevin equations, one can ini-

tiate an independent generator in each thread (one-

SOP-GPU: Simulations in the Centisecond Timescale
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RNG-per-thread approach). First, a CPU generates N in-

dependent sets of random seeds for N RNGs, and then

transfers them to the GPU global memory. When 4N

random numbers ui, a are needed for 3N normally dis-

tributed random numbers gi, a, each thread reads a cor-

responding set of random seeds to produce 4 normally

distributed random numbers for each residue. Then, an

RNG updates its current state in the GPU global mem-

ory, which is used as an initial seed within the same

thread at the next time step. In a different approach, one

RNG state can be shared among the computational

threads across the entire GPU device (one-PRNG-for-all-

threads approach). Using both strategies, we have devel-

oped and tested the GPU-based realizations of RNGs

using the Hybrid Taus, Ran2, Lagged Fibonacci and

Mersenne Twister algorithms (manuscript in prepara-

tion). All these algorithms pass stringent statistical tests

and produce random numbers of very high statistical

quality.65 Here we employ the Hybrid Taus generator65

(Supporting Information, Algorithm 6).

Numerical integration kernel

When the particle based parallelization is utilized,

the subroutines for the force computation can be

incorporated into the integration kernel. Although this

requires more shared and local memory, it is efficient

in simulations of smaller systems, for which N is com-

parable with the number of ALUs on a GPU. This

allows one to read the coordinate variables, stored in

the GPU global memory, only once at the beginning of

the computational procedure and to pass the data to

other subroutines. For larger systems (N�103), there is

a trade-off between the number of memory reads and

the overall GPU utilization. Since all the interactions

are more or less local, texture cache can be used as

well to access the coordinates in the GPU global mem-

ory. When the interacting pair based parallelization is

employed, the force computations can be performed in

a separate kernel. Then, the force summation (gather-

ing kernel, Algorithm 5 in Supporting Information)

can be done inside the integration kernel. The numeri-

cal routine for the propagation of Langevin equations

of motion is given in Supporting Information (Algo-

rithm 7).

The SOP model

To describe the molecular force field, we adapted the

SOP model (SOP-GPU program).52–55 In the SOP

model (see Section IV in Supporting Information), each

residue is described using a single interaction center (Ca-

atom). The potential energy function of a protein confor-

mation V, specified in terms of the coordinates {r} 5
r1,r2,. . .,rN, is given by

V ¼ VFENE þ VATT
NB þ VREP

NB ¼

�
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In Eq. (1), the finite extensible nonlinear elastic (FENE)

potential VFENE describes the backbone chain connectivity.

The distance between two neighboring residues, i and i 1
1, is ri,i 1 1, while r0i,i 1 1 is its value in the native (PDB)

structure, and R0 5 2Å is the tolerance in the change of a

covalent bond [first term in Eq. (1)]. We used the Len-

nard-Jones potential (VATT
NB ) to account for the noncova-

lent interactions that stabilize the native state [second

term in Eq. (1)]. We assumed that, if the non-covalently

linked residues i and j (|i 2 j|>2) are within the cutoff

distance RC 5 8Å in the native state, then Dij 5 1, and

zero otherwise. The value of en quantifies the strength of

the non-bonded interactions. All the nonnative interac-

tions in the VREP
NB potential are treated as repulsive [fourth

term in Eq. (1)]. An additional constraint is imposed on

the bond angle formed by residues i, i 1 1, and i 1 2 by

including the repulsive potential with parameters er 5 1

kcal/mol and r 5 3.8 Å, which determine the strength

and the range of the repulsion. This is done to ensure the

self-avoidance of the protein chain.

To characterize the biomechanical unfolding reactions

for each protein in terms of kinetic pathways, we used a

combination of techniques. These include the visual

inspection of the force-extension curves and the subse-

quent structural analysis of microscopic conformational

transitions associated with each force peak. We also used

a more detailed identification of transient conformations

and intermediate states by comparing the global RMSD

values (DWT(t)) with the partial RMSD values (DX(t)) as

described in Ref. 53. These measures of structural simi-

larity between the wild-type (WT) or native state and a

transient conformation (X) were used to estimate the

time of detachment of a secondary structure element

from the rest of the molecule in question.53

RESULTS

SOP-GPU program for Langevin simulations
of proteins

We employed the methodology for the GPU-based Lan-

gevin dynamics to develop a CUDA program for biomo-

lecular simulations fully implemented on a GPU. We car-

ried out test simulations of the mechanical unfolding for
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the all-b-strand domain WW from the human Pin1 pro-

tein (Table I) using SOP-GPU program. The smallest

known all-b WW domain is of particular interest to the

field of protein folding and dynamics, as evidenced by the

considerable efforts expended to characterize the biophysi-

cal and biochemical properties of this protein.29,67,68

Benchmark simulations

We consider the following principal sources of error:

(1) precision issues arising from the difference in single

precision (GPU) and double precision (CPU) IEEE float-

ing point arithmetic, (2) possible read/write errors associ-

ated with the use of the GPU global memory (hardware),

and (3) overall accuracy of the SOP-GPU program, that is,

possible errors in the numerical routines (software). We

report on the performance of the SOP-GPU package (in

CUDA) on a GeForce GTX 295, and compare it against

the performance of the optimized C code (SOP-CPU pro-

gram) on a dual Quad Core Xeon 2.83 GHz of a similar

level of technology. All CPU/GPU benchmarks are

obtained on a single GPU and on a single CPU core.

The Langevin equations of motion for each residue ri
have been integrated numerically using the first-order

integration scheme,69

riðt þ hÞ ¼ riðtÞ þ fðriðtÞÞh
n

þ GiðtÞ; ð2Þ

where Gi 5 gi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTn=h

p
is the random force and f(ri)

5 2(@V(ri)/@ri) is the total force, due to the covalent

and the noncovalent interactions [Eq. (1)], exerted on the

i-th particle. Benchmark simulations of the mechanical

unfolding of the WW domain have been carried out at

room temperature (kBT 5 4.14 pNnm) with the time step

h 5 20 ps using the standard bulk water viscosity, which

corresponds to the friction coefficient n 5 7.0 3 105 pN

ps/nm. The unfolding trajectories have been generated by

fixing the N-terminal end and by pulling the C-terminal

end of the WW domain with the time-dependent mechani-

cal force, f(t) 5 rft. The force has been applied in the direc-

tion of the end-to-end vector using the force-loading rate rf
5 jvf, where j 5 35 pN/nm is the cantilever spring con-

stant and vf 5 2.5 lm/s is the pulling speed. It took 47 h

to produce 1000 trajectories each of length 0.008 s (at vf 5
2.5 lm/s) by integrating over 4 3 108 steps on the GPU

(Table I). This leads to a wall-clock time of �170 s per tra-

jectory on a GPU when compared with 3.5 h on a CPU.

We analyzed the results of CPU- and GPU-based com-

putations by comparing the force-extension curves (force

spectra) f(DX), the average temperature hTi, and the dis-

tributions of unfolding forces (peak forces in the force

spectra) obtained on the CPU and on the GPU (Fig. 1).

The temperature conservation (dhTi/dt), the mechanical

work performed on the system (w 5 $X0

Xfin f(X)dX), and

the distribution of unfolding forces are rigorous metrics

of accuracy of pulling simulations. Aside from small

deviations due to the different initial conditions, the pro-

files of f(DX) and hTi, obtained on the CPU and on the

GPU agree very well (Fig. 1). A small drop in hTi is due
to the onset of the unfolding transition in the WW do-

main, which occurs at t � 0.15 ms. The histograms of

Table I
The Total Number of Residues, Covalent Bonds, Native Contacts, and Residue Pairs for a Range of Proteins (WW Domain, Ig27 domain, C2A

Domain, and the gC Chain), for Long Protein Fibers (Fb Monomer and Dimer (Fb)2), and for the Protein Assembly (Viral Capsid HK97)

Protein WWa Ig27b C2Ac gCd D-De Fbf (Fb)2
g HK97h

PDB code 1PIN 1TIT 2R83 1M1J 1FZB 3GHG 3GHG 1FT1i

Residues 34 89 126 517 1062 1913 3849 115140
Covalent bonds 33 88 125 521 1072 1932 3839 114720
Native contacts 65 255 328 1770 3498 5709 12560 467904
Non-native pairs 463 3573 7422 131,101 558,833 1,821,212 7,389,077 16,178,028j

Integration step h (ps)k 20 40 40 40 40 40 40 40
Number of stepsl 0.43109 0.53109 0.53109 13109 1.53109 23109 43109 13109m

Trajectory length, sn 0.008 0.02 0.02 0.04 0.06 0.12 0.16 0.04

Also shown are the integration time step h, the number of iterations of the Langevin dynamics algorithm, required to generate a force-extension curve (force-indentation

curve) for a protein (viral capsid HK97) at the experimental pulling speed vf 5 2.5 l m/s, and the full length of the trajectory.
aAll-b-strand WW-domain.
bIg27 domain of human titin.
cC2A domain from human synaptotagmin-1 Syt1.
dgC-Chains from human fibrinogen Fb.
eDouble-D fragment (D-D interface) from human fibrinogen Fb.
fHuman fibrinogen monomer Fb.
gHuman fibrinogen dimer (Fb)2 built from two monomers and the D-D interface.
hHK97 is Head II viral capsid.
iPDB code for a structural unit; the full HK97 structure is in the Viper database (66).
jBased on a cut-off distance of 200 Å.
kIntegration time step is computed as described in Section IV in Supporting Information.
lNumber of iterations required to fully stretch a protein.
mNumber of iterations required to generate a force-indentation curve for HK97 at vf 5 2.5 lm/s
nTime required to obtain a full force-extension (force-indentation) curve for a protein (for HK97).
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unfolding forces result in almost identical values of the av-

erage unfolding force, that is, hfi � 120.6 pN (on the

CPU) versus hfi � 120.9 pN (on the GPU), and in similar

values of the standard deviations of rf � 5.8 pN (on the

CPU) versus rf � 5.9 pN (on the GPU). The magnitude

of the most probable unfolding force is within the 60–200

pN force range observed for the b-strand proteins.70,71

We also analyzed the numerical accuracy of the first-order

integration scheme [Eq. (2)] by estimating the magnitude

of numerical error, which might add up over many bil-

lions of iterations (Section III, Supporting Information).

We found that, in long pulling simulations on a GPU, sin-

gle precision arithmetic and the Ermak-McCammon algo-

rithm can be used to describe accurately the mechanical

properties of a biomolecule.

Performance measurements

We have compared the overall performance of an end-

to-end application of the SOP-GPU program with the

heavily tuned CPU-based implementation of the SOP

model (SOP-CPU program) in describing the Langevin dy-

namics of the WW domain at equilibrium (Table I). We

profiled the computational performance of the SOP-GPU

program as a function of the number of independent tra-

jectories, s, running concurrently on the GPU (many-runs-

per-GPU approach). Alternatively, we could have run one

trajectory on the GPU but for a range of systems of differ-

ent number of residues N (one-run-per-GPU approach).

Hence, in the former approach, the total system size is

Ntot 5 Ns. The results obtained (Fig. 2a) show that, for

the WW domain (N 5 34), the GPU accelerates computa-

tions starting from 3 independent runs (many-runs-per-

GPU approach), which is equivalent to a single run for a

system of Ntot � 102 residues (one-run-per-GPU

approach). This is the so-called break-even point [Fig.

2(a)]. It is important to understand that for small systems

(Ntot [ 102 residues), there is insufficient parallelism to

fully occupy the GPU resources until the break-even point

is reached. While the simulation time on the CPU scales

linearly with s (or with Ntot), the scaling on the GPU in

this regime is sublinear (nearly constant) up to Ntot � 104

(s � 300). At this point, the GPU shows significant per-

formance gains relative to the CPU reaching the maximum

80–90-fold speedup [Fig. 2(a)]. We ran the simulations

long enough to converge the speedup ratio (106 steps of

size h 5 20 ps). Beyond this point, the GPU is fully sub-

scribed and the execution time scales linearly with s (Ntot).

The quad Core Xeon CPU E5440, used in this work,

has a peak performance of �45.28 GFlops or �11.32

GFlops per computational core. GeForce GTX 295 (with 2

GPUs) has a peak performance of �1788 GFlops or �894

GFlops per GPU. Comparing one computational core of

the CPU with one GPU, we find that, for fully optimized

implementations on the GPU and on the CPU, the theo-

retical speed-up factor, given by the ratio of 894 GFlops

(GPU) over 11.32 GFlops (CPU), is roughly equal to 80.

The �90-fold speedup obtained for a system of �105 par-

ticles is very close to the theoretical value, which shows

that SOP-GPU program is fully optimized [Fig. 2(b)]. The

CPU/GPU time exceeds the theoretical estimate due to

major differences in hardware architecture of the CPU and

of the GPU, and due to higher memory bandwith on the

GPU device.32 Additional acceleration can be achieved

using intrinsic high-speed mathematical functions present

on the GPU [Fig. 2(b)].

In general, the total number of threads Mth 5 mBB,

defined by the number of thread blocks mB of size B, is

roughly equal Ntot, that is, Mth � Ntot 5 Ns. Because it is

difficult to predict which block size B will result in the

Figure 2
Panel a: The log-log plot of the computational time per 103 steps of

the simulations on a CPU and on a GPU versus the system size,

Ntot (one-run-per-GPU approach), and versus the number of

independent trajectories running concurrently s (many-runs-per-GPU

approach), for the all-b-strand WW domain. The relative GPU

performance is tested for the blocks of size B 5 64, 128, 256, and 512.
While the single CPU core generates one trajectory at a time, the GPU

device is capable of running many trajectories at the same time. Panel

b: The log-linear plot of the relative CPU/GPU performance

(computational speedup) of an end-to-end application of SOP-GPU

program as a function of Ntot and s. The relative performance is

compared for the SOP-GPU program, and for the SOP-GPU program

accelerated by using texture cache, and by using texture cache plus

intrinsic mathematical functions. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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best performance, we carried out benchmark simulations

for B 5 64, 128, 256 and 512. The results show that, to

achieve top performance, Mth should exceed the number

of ALUs on a GPU by a factor of 20–40. For example, on

the graphics cards GeForce GTX 280, GTX 295, and Tesla

C1060, each with 240 ALUs, Mth � 5000–10,000, which

translates to s � 300 trajectories (Ntot 5 10,000) in the

case of the WW domain (Fig. 2). This implies that using

small thread blocks is more advantageous when Mth [
5000, for example, when simulating s 5 1 trajectory for a

system of the size of the fibrinogen monomer Fb (N �
2000) or s � 50 runs for a system of N � 100 residues

(C2A). Larger thread blocks should be used when

Mth�5000 to obtain a few trajectories for the fibrinogen

dimer (Fb)2 (N � 4,000) or one trajectory for the viral

capsid HK97 (�105 residues, Table I). We would like to

point out that, in general, the block size B does not affect

the total number of threads (Mth) on a GPU, and, hence,

the ratio of Mth to the number of ALUs (for a given

graphics processor). However, since one thread block is re-

stricted to one multiprocessor, for a GPU to be fully sub-

scribed the number of thread blocks mB 5 Mth/B should

be larger than the number of multiprocessors. For exam-

ple, on a graphics card GeForce GTX 295 the number of

multiprocessors is 240/8 5 30, since there are 8 ALUs per

multiprocessor (see Section I in Supporting Information).

Applications

Using SOP-GPU simulations, we carried out dynamic

force measurements in silico for a range of proteins includ-

ing the C2A domain from human synaptotagmin-1, and

the gC-chain and the double-D fragment from human

fibrinogen (Table I). We employed the time-dependent

protocol of force application, f(t) 5 jvft (j 5 35 pN/nm),

using the experimental pulling speeds vf 5 2.5 and 25

lm/s (AFM). In all simulations at T 5 300 K, the pulling

force f(t) was applied in the direction of the end-to-end

vector of the protein chain. We compared the force-exten-

sion profiles and the unfolding pathways with the experi-

mental results, and with the results of application of 104–

106-times faster pulling speeds used in all-atom MD simu-

lations (Supporting Information, Section IV).

The C2A domain from human synaptotagmin-1

Human synaptotagmin-1 (Syt1) is a Ca21 sensor

required for fast fusion of transmitter-loaded synaptic

vesicles with the presynaptic plasma membrane.72 The

cytoplasmic region of Syt1 is composed of the C2A and

C2B domains, which bind Ca21 and induce monolayer

bending. Hence, resolving the mechanical properties of

Syt1 is crucial for understanding its precise role in synap-

tic fusion. AFM based dynamic force measurements have

been conducted to probe the mechanical response of the

C2A domain composed of eight b-strands (S–S8) and one

a-helix (H1).71,73 We explored the unfolding microme-

chanics of C2A using SOP-GPU simulations (Supporting

Information, Section IV). On a single GPU, it takes 35 h

to generate 100 long 0.02 s trajectories of unfolding (at vf
5 2.5 lm/s) over 5 3 108 steps using the many-runs-per-

GPU approach (21 min per trajectory, Table I).

In the 130 trajectories of unfolding at vf 5 2.5 lm/s,

the C2A domain was observed to unravel following either

the major pathway (69% of the time), or the minor path-

way (31%) displayed in Figure 3(a). These results agree

well with the experimental data,73 which showed that

Figure 3
The dynamics of unfolding of the C2A domain from human

synaptotagmin Syt1 (Table I) obtained using SOP-GPU simulations at the

pulling speeds vf 5 2.5 and 25 lm/s (panels a, b, and c), and using the
all-atom MD simulations in implicit solvent on a CPU at vf 5 106 lm/s

(panels d–e). Panel a: Structural snapshots of the native state (0), the

partially unfolded intermediate states (1a, 1b, 2a, 2b, and 3a), and the

fully stretched state.4 The intermediate structures 1a, 2a, and 3a (major

pathway), and 1b and 2b (minor pathway) are observed both in the

SOP-GPU simulations and in the MD simulations. However, the major

unfolding pathway observed most of the time in the experiments and in

the SOP-GPU simulations at vf 5 2.5 lm/s is the minor pathway

observed in the MD simulations. Panels b and c: The force-extension

profiles (rugged curves) obtained from the SOP-GPU simulations at

vf 5 2.5 lm/s, which correspond to the major pathway (panel b) and to

the minor pathway (panel c). The ascending curves are the worm-like

chain fits to the force peaks. Panels d and e: The force-extension profiles

obtained using MD simulations, which correspond to the major pathway

(panel d) and to the minor pathway (panel e). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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�38% of the time C2A domains unfold by populating a

partially unfolded intermediate. Interestingly, the percen-

tages change with the pulling speed: in 64% (36%) of tra-

jectories obtained at a 10-fold faster pulling speed vf 5 25

lm/s, the C2A domain was observed to follow the major

(minor) pathway. Along both pathways, the first unfolding

transition is due to the forced unraveling of the C-terminal

strand S8 at a 58.5 � 4.6 pN force [structures 1a and 1b

in Fig. 3(a)], which compares well with the average experi-

mental force of 51 � 14 pN.71,73 The next force peak at

61.4 � 5.7 pN is due to unfolding transitions which differ

in the major and in the minor pathways. Along the major

pathway, the C2A domain unravels gradually from the C-

terminal end through the detachment of the S7 strand

[structure 2a, Fig. 3(a)] and the S6 strand [structure 3a,

Fig. 3(a)]. Along the minor pathway, the second unfolding

transition is due to the simultaneous unraveling of the

strands S1 and S7 at both ends of the molecule [structure

2b, Fig. 3(a)]. The corresponding �7.0 nm peak-to-peak

distance [Fig. 3(b,c)] is close to 7.4 � 3.5 nm extension

measured experimentally [see Fig. 3(c) in Ref. 73].

We also carried out pulling simulations for the C2A do-

main using MD simulations in implicit solvent (see Sup-

porting Information). It took 4 days to generate one trajec-

tory of unfolding at �105 faster pulling speed vf 5 105 lm/

s on one dual-core 2.83 GHz AMD Opteron 2214 node. At

this vf, the C2A domain unravels following three pathways,

two of which are observed at the slower speeds vf 5 2.5 and

25 l m/s [major and minor pathways, Fig. 3(a)]. In the

additional third pathway, the C2A domain unfolds starting

from the N-terminal end of the chain (data not shown). We

also found that a �105-fold increase in vf changes the path-

way probabilities. The minor pathway, observed in the SOP-

GPU simulations at vf 5 2.5 l m/s, becomes the dominant

pathway (55%) in all-atom MD simulations [Fig. 3(d)],

whereas the role of the major pathway in the SOP-GPU

simulations diminishes (27%) in MD simulations [Fig.

3(e)]. The remaining 18% of MD simulation runs corre-

spond to the new (third) pathway. Hence, a �105-fold

increase in vf triggers a substantial change in the unfolding

pattern and in the pathway probabilities, and leads to the

emergence of a new pathway, which is not observed at the

experimental pulling speeds. We see that, although all-atom

MD simulation methods do capture the complexity of the

mechanical unfolding and show some quantitative agree-

ment with the experimental data, their interpretive capacity

is reduced due to lack of quantitative agreement with

experiments in terms of the unfolding kinetics (pathways)

and thermodynamics (force-extension curves).

The cC-chain and double-D fragment from human
fibrinogen

Fibrinogen (Fb) is a blood plasma protein that poly-

merizes into fibrin fibers, which aggregate to form the

three-dimensional scaffold called a clot. A blood clot

needs to maintain a balance between the stiffness and the

plasticity required for hemostasis and wound healing.

Although the physical properties of fibrin fibers have

been characterized at the fiber and whole clot levels, the

micromechanics of fibrinogen, the precursor of fibrin,

remains unexplored. AFM based dynamic force measure-

ments have been conducted to probe the mechanical

response of fibrin oligomers.9,21 We carried out SOP-

GPU pulling simulations for the gC-chain and for the

double-D fragment of Fb (Table I). The double-D frag-

ment is composed of the two identical subunits (D)

formed by the gC- and bC-chains of Fb, interacting

through the D:D association interface.

On a single GPU, it takes �98 h to generate 20 long

(0.04 s) trajectories of unfolding for the gC-chain (at vf
5 2.5 lm/s) over 109 steps using the many-runs-per-

GPU approach (5 h per trajectory, Table I). The sawtooth

force-extension profiles (Fig. 4) compare well with the

experimental force spectra of Brown et al. (see Fig. 3 in

Ref. 21), obtained at the same value of vf. The unfolding

forces and molecular elongations observed in our SOP-

GPU simulations are within the experimental �50–150

pN force range and in the �15–40 nm extension range.

The unfolding mechanism consists of three major steps,

corresponding to the three force peaks in the force-exten-

sion curves (Fig. 4). First, the C-terminal b-strand (resi-

dues 381–390) is pulled out of the central part of the

gC-chain, which is followed by unfolding of the central

portion of the chain (residues 234–311). This results in

the unraveling of the gC-chain into two subunits [struc-

ture 1 in Fig. 4(a)]. Next, the first subunit (residues 139–

234) and the second subunit (residues 311–381) unfold

one after another [structures 2a and 2b in Fig. 4(a)].

This mechanism persists as it appears in all 100 simula-

tion runs at vf 5 2.5 lm/s. Because of the two disulfide

bonds (Cys153–Cys183 and Cys326–Cys339), the globally

unfolded state [structure 3 in Fig. 4(a)] shows the two

remaining globular domains. We see that the force spec-

tra obtained at the slower pulling speed vf 5 2.5 lm/s

[Fig. 4(c)] show clear force signals, compared to the

spectra generated at the faster speed vf 5 25 lm/s [Fig.

4(d)]. This implies that the unfolding transitions are

resolved better at vf 5 2.5 lm/s. For comparison, we also

carried out pulling simulations at �103-times faster vf of

103 lm/s. The resulting force spectra show a single broad

force peak of �300 pN corresponding to the end-to-end

distance of �10–20 nm [Fig. 4(c,d)]. At this pulling

speed, the secondary structure motifs of the gC-chain
unravel almost simultaneously.

We also performed two all-atom SMD simulation runs

for the gC-chain (see Supporting Information). It took

37 days to obtain one trajectory on one node equipped

with two quad-core 2.83 GHz Intel Xeon processors. At a

104-times faster pulling speed vf 5 3 3 104 lm/s, the

gC-chain unravels in just one step at a much higher

force of �1250 pN [Fig. 4(e)], compared to the experi-
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mental �50–150 pN force range,21 populating the globally

unfolded state [structure 3 in Fig. 4(b)]. Similar to the

results of the SOP-GPU pulling simulations at vf 5 103 l
m/s, in the SMD simulations at vf 5 3 3 104 lm/s the

consecutive unfolding transitions observed at vf 5 2.5 and

25 lm/s occur simultaneously. The end-to-end distance of

�10–20 nm, compares well with the end-to-end distance

observed in the SOP-GPU simulations at vf 5 103 lm/s.

Hence, at a �103–104-fold faster pulling speed, both the

SOP-GPU and the SMD simulations predict a molecular

mechanism for unfolding that is markedly different from

the mechanism observed at the experimental pulling

speeds. As a result, the rich structure of the force spectrum

with multiple peaks, separated by the average peak-to-

peak distance of �15–40 nm, disappears altogether.

On a single GPU, it takes �4 days to generate 50.06 s

long, trajectories of unfolding for the double-D fragment

(at vf 5 2.5 lm/s) over 1.5 3 109 steps using the many-

runs-per-GPU approach (18 h per trajectory, Table I).

We found that, at 2.5 lm/s, the unfolding process starts

with the force-induced rupture of the binding contacts

stabilizing the D:D interface. This results in a �4–5 nm

extension, and in the formation of mechanically

decoupled identical D fragments [structure 1 in Fig.

5(a)]. Next, the gC-chains in the D domains unfold fol-

lowing the three major steps observed for the single gC-
chain [Fig. 4(a)], leading to the formation of six interme-

Figure 4
The dynamics of unfolding of the gC-chain from human fibrinogen Fb

(Table I) obtained using SOP-GPU simulations at the pulling speeds

vf 5 2.5 and 25 lm/s (panels a, c, and d), and using SMD simulations

at vf 5 3 3 104 lm/s on a CPU (panels b and e). Panels a and b:

Structural snapshots of the folded state (0), the intermediate partially

unfolded states (1, 2a, and 2b), and the globally unfolded state.3 The

intermediate states 1 and 2a (for pathway 1), and 1 and 2b (for

pathway 2) are observed only in SOP-GPU simulations, but not in

SMD simulations. Panels c–e: The force-extension profiles (rugged

curves) generated at vf 5 2.5 lm/s (pathways 1 and 2, panel c) and at

vf 5 25 lm/s (pathways 1 and 2, panel d) using the SOP-GPU

program, and at vf 5 106 lm/s utilizing SMD simulations (panel e).
For comparison, we also present the force-extension curve obtained

from two SOP-GPU simulation runs at vf 5 103 lm/s (panels c and d).

The ascending curves are the worm-like chain fits to the force peaks.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5
The dynamics of unfolding of the double-D fragment from human

fibrinogen (Table I) obtained using SOP-GPU simulations at the pulling

speed vf 5 2.5 lm/s (panels a and b) and 25 lm/s (panel c). Panel

a: Structural snapshots of the native state (0), the intermediate

conformation with the disrupted D:D-interface,1 the partially unfolded

intermediate states,2–6 and the fully stretched state.7 Panels b and c:

The force-extension profiles (rugged curves) generated at vf 5 2.5 lm/s

(panel b) and at vf 5 25 lm/s (panel c) using SOP-GPU program. Also

shown are the worm-like chain fits to the force peaks. [Color figure can

be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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diate conformations [structures 2–7, Fig. 5(a)]. This

mechanism is robust as it was observed in all 20 runs.

The force spectra, obtained at the slower vf 5 2.5 lm/s,

agree very well with the experimental force spectra (Fig.

3 in Ref. 21). At the faster pulling speed vf 5 25 lm/s,

several unfolding transitions described above occur

almost simultaneously. The shift in the unfolding mecha-

nism is fully reflected both in the qualitative and in the

quantitative changes to the force spectra [Fig. 5(c)],

where some of the force peaks are not resolved. Indeed,

the discrete unfolding steps observed at vf 5 2.5 lm/s,

each resulting in a distinct force signal [Fig. 5(b)], disap-

pear when the double-D fragment is pulled faster.

DISCUSSION

GPU-based Langevin simulations in the
centisecond timescale

We have developed and tested, to the best of our

knowledge, the first GPU-based implementation of Lan-

gevin simulations of biomolecules. We presented the nu-

merical routines for the generation of random numbers

(Hybrid Taus algorithm), for the construction of Verlet

lists, and for the numerical integration (first order

scheme). The algorithm has been mapped into a standard

CUDA code (SOP-GPU program). Benchmark tests show

that the results of simulations of the mechanical unfold-

ing of proteins on a GPU and on a CPU agree very well

(Fig. 1). This attests to the accuracy of the SOP-GPU

program. Using an exactly solvable model of the Brown-

ian particle evolving on a harmonic potential, we

assessed the accuracy of the numerical integration of

Langevin equations of motion. We showed that using the

first-order integrator (Ermak-McCammon algorithm) is

sufficient to describe accurately the force-induced elonga-

tion of a protein chain over many billions of iterations.

GPUs can be utilized to generate a few trajectories of

Langevin dynamics for a large system of �103–105 resi-

dues using the one-run-per-GPU approach. This is the

main approach taken by many researchers in MD simula-

tions on graphics processors.28,42,43,46,47,74 One of

the highlights of this work is the many-runs-per-GPU

approach, which has never been benchmarked. This

approach enables one to run many independent trajecto-

ries simultaneously for a small system of �102–103

residues. Another important highlight of this work is an

efficient utilization of the GPU texture cache to process

intermediate variables and to store data locally. Indeed,

compared with the optimized CPU-based implementa-

tion of the Langevin dynamics algorithm, the GPU-based

realization without texture cache leads to a moderate

�10–50-fold computational speedup, which also depends

on the system size Ntot � 103–106 [Fig. 2(b)]. However,

efficient utilization of the texture memory to access the

coordinates of the particles in the GPU global memory

allowed us to reach an 85-fold speedup. Additional acceler-

ation can be achieved using intrinsic high-speed mathe-

matical functions [90-fold speedup, Fig. 2(b)]. We profiled

the SOP-GPU program in terms of the computational

time and memory usage for a range of proteins listed in

Table I. The simulation time on a GPU remains roughly

constant for a system of Ntot � 102–104 residues (sub-lin-

ear regime), and scales linearly with Ntot > 104 residues.

We also ran benchmark simulations for several differ-

ent protein systems using the one-run-per-GPU

approach, and analyzed one simulation run for each

system, generated over 108–109 steps. For all test sys-

tems of Ntot[4000 residues, the computational speed

exceeded 107 steps per wall-clock hour (Fig. 6). This is

not surprising since Mth � 5000 is the amount of

threads needed to fully utilize the GPU resources. For

larger systems of Ntot Z 104 residues, the computa-

tional speed scales roughly linearly with Ntot (Figs. 2

and 6). The nonmonotonic dependence of the computa-

tional speed on Ntot is due to the different native topol-

ogies of the test systems, that is the number of native

and non-native contacts in the PDB structure (Table I).

We showed that the amount of GPU on-board memory

in contemporary graphics cards, that is, �1 GB

(GeForce GTX 200 series) and 4 GB (Tesla C1060), is

sufficient to describe the Langevin dynamics of large

biomolecular systems of �104 residues, that is, compa-

rable in size with the fibrinogen dimer (Fb)2 (inset in

Figure 6
The log-log plot of the computational speed (number of steps per

hour) for an end-to-end application of the SOP-GPU program (with

thread blocks of size B 5 256), accelerated using texture cache and
intrinsic mathematical functions, versus system size Ntot (one-run-per-

GPU approach). Shown are the estimates for a range of biomolecules,

including small proteins (the WW-domain, the Ig27 domain, and the

C2A domain), large protein fragments (the gC-chain and the double-D

fragment), long protein fibers (the Fb monomer and dimer (Fb)2), and

the large-size viral capsid HK97 (Table I). Inset: The memory usage on

a GPU as a function of Ntot. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Fig. 6). The amount of on-board memory in graphics

cards with new Fermi architecture (from NVIDIA) is

1.5–6 GB.75 We also described an algorithm, a combi-

nation of Verlet lists and pair lists for non-native pairs,

for efficient use of the limited GPU global memory for

larger systems (see Supporting Information, Section II),

such as the viral capsid HK97 (Ntot�105).

A combination of the Ca-based coarse-grained SOP

model of proteins and GPU-based computations enabled

us to follow the biomolecular dynamics in the long 0.01–

0.1 s timescale (Table I). This is the experimentally

relevant time for biomechanical reactions, including

the forced unfolding of small proteins and protein tan-

dems,20,53,73,76 the force-driven elongation of long

protein fibers,21 and the force-induced indentation of

large-size biomolecular assemblies such as plant and ani-

mal viruses11–14 and bacteriophages.15,16 Hence, SOP-

GPU simulations can be utilized to explore the unfolding

micromechanics of protein fibers, and to characterize the

visco-elastic properties of viral capsids using the experi-

mental force loads. This makes it possible to interpret

the experimental force spectra and force-indentation pro-

files of biomolecules, obtained in dynamic force spectros-

copy assays, and, thus, to bridge the gap between theory

and experiments. For example, on a single GPU (GeForce

GTX 295) it takes only 10 days to generate a single tra-

jectory of unfolding at vf 5 2.5 lm/s over 4 3 109 steps

for the fibrinogen dimer (Fb)2. For comparison, it would

take �16 months to complete one simulation run on the

CPU with 2.83 GHz Intel Xeon E5440 processor (11,520

CPU hours). It takes �40 days to generate one force-in-

dentation curve (both indentation and retraction) for the

viral capsid HK97 (at vf 5 2.5 lm/s) over 109 steps on a

single GPU (GeForce GTX 200 series, Tesla C1060), com-

pared with 120 months on a CPU with 2.83 GHz Intel

Xeon E5440 processor (86,400 CPU hours). Hence, many

force-indentation trajectories for a viral capsid can be

obtained on a single desktop computer equipped with

several GPUs. A typical force-indentation profile for the

viral capsid HK97 obtained at vf 5 2.5 lm/s is presented

in Figure 7, which shows the hysteresis upon retraction

observed in AFM experiments on viral capsids.16,17 The

estimated spring constant of �0.12 N/m for HK97 agrees

with the experimental values of this parameter for empty

capsids.15,77

Unfolding dynamics: slow versus fast
pulling speeds

The nature of the mechanical response of soft biolog-

ical matter depends sensitively on the conditions of

force application f 5 f(t)n, including the force magni-

tude f(t) 5 rft which is proportional to the force-load-

ing rate rf 5 jvf (or the pulling speed vf) and the direc-

tion n (e.g., shearing force vs. peeling force). In this

picture, f(t) projects the multidimensional free energy

landscape of the protein of interest on the singled out

one dimensional reaction coordinate, parametrized by

the protein end-to-end vector X. The applied force tilts

the energy landscape, thus, rendering the native folded

state unstable when f(t) exceeds some critical threshold.

On the other hand, the internal dynamics of the protein

chain couples the local topology-dependent modes to the

global unfolding transitions reflected in the time-evolu-

tion of X.78 As a result, the mechanical perturbation

ramped up with vf might be shared unequally among the

secondary structure motifs due to their different me-

chanical stability and/or due to time-dependent tension

propagation from the tagged C-terminus to the con-

strained N-terminus of the molecule. The influence of

tension propagation on the unfolding kinetics has been

described in the context of forced unfolding of ribo-

zyme52 and for the mechanical unraveling of proteins79

and protein tandems.80 This results in the formation of

intermediate states en route to unfolding and leads to

the emergence of multiple unfolding pathways. In addi-

tion, the extent of the force-induced decrease in barrier

heights and motions of the transition states might vary

for different pathways. This might change the pathway

probabilities observed at different pulling speeds.

The results obtained for the C2A domain from human

Syt1, and for the gC-chain and double-D fragment from

human Fb, carried out at vf 5 2.5 and 25 lm/s (SOP-

GPU), and at vf 5 104–105 lm/s (all-atom MD), fully

support the above arguments. We see that the global

unfolding transitions in these protein systems follow

Figure 7
The dynamics of force-induced indentation of the empty viral capsid

HK97 (Table I) obtained using SOP-GPU simulations at the pulling

speed vf 5 2.5 lm/s. The spherical capsid is pressed against the surface

by the cantilever tip. The direction of force application is indicated by

the arrow. The ascending and descending curves showing the

indentation and retraction profiles for HK97 are compared with the

‘‘control’’ simulation run describing the mechanical bending of the

cantilever tip (dashed line). Also shown are the transient structures

encountered along the indentation-retraction pathway.
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multiple kinetic pathways and involve formation of inter-

mediate states (Figs. 3, 4, and 5), which is reflected in

the force spectra. A moderate 10-fold increase in the

pulling speed triggers the change in the mechanism of

unfolding for the gC-chain and for the double-D frag-

ment leading to the simultaneous unfolding of various

secondary structure elements. This is manifest in the

force spectra, where, due to ‘‘kinetic disorder’’, the

broader force signals become less resolved [Figs. 4(d) and

5(c)]. We have observed this effect both in SOP-GPU

simulations and in SMD simulations at very fast force

loads (Fig. 4). An even larger 104–105-fold increase in vf
results in substantial changes in pathway probabilities

and in the emergence of a new pathway for the C2A do-

main [Fig. 3(d,e)]. For the gC-chain, a 104–105-fold in vf
gives rise to an entirely different unfolding mechanism,

not observed at the experimental values of vf, where all

the secondary structure elements unravel at the same

time [Fig. 4(b)]. As a result, the fine structure of the

force spectrum is reduced to a single peak [Fig. 4(e)].

In general, there are neither exactly solvable models

nor analytically tractable approximations that can be

used to describe the kinetics and thermodynamics of a

protein for all values of an applied mechanical force.

Under certain assumptions, one can use a simple scaling

law for the dependence of the average unfolding force f

on the pulling speed vf, �f�ln[jvf]. However, this relation

assumes that the Bell model81,82 applies in the entire

range of pulling speeds used to unfold a given protein.

In fact, the Bell model is valid only when the well-to-bar-

rier distance is independent of force,83,84 which is

unlikely to be the case in the entire range of force loads

from the experimental speeds of 1–10 lm/s to the values

of 104–106 lm/s used in MD simulations. The force-

induced motion of the transition state barrier is dis-

cussed, for example in Refs. 85, 86. Hence, in general,

the dependence of �f on vf is rather complicated, and

when the assumptions behind the Kramers theory87,88

no longer hold, the scaling law, which can only be used

when the unfolding pathway(s) remain(s) the same for

varying vf, is hard to derive.

All-atom MD simulations of the mechanical unfolding

of proteins are crucial in pinpointing the structural

underpinnings of the unfolding process.89 Unfortunately,

given the limited computational capacity available today,

the pulling speeds (force-loading rates) used in MD sim-

ulations exceed their experimental counterparts by many

orders of magnitude. This makes it difficult to directly

relate the force signals, showing up in the experimental

force-extension profiles, to the corresponding micro-

scopic molecular changes observed in all-atom MD simu-

lations. The SOP-GPU simulations, described in this

work, allow for the theoretical inference of the kinetic

pathways and structural features, underlying the micro-

mechanics of unfolding, under the experimentally rele-

vant conditions of force application.

CONCLUSION

Nanomanipulation of biomolecules by mechanical

force is widely used to explore their physical properties

and to control their energy landscape at the single-mole-

cule level. There is a wealth of experimental data for a

large number of biomolecular systems awaiting for the

theoretical interpretation. The challenge is to extract the

unfolding pathways and to resolve the molecular mecha-

nism(s) from experimental measurements such as the

force-extension curves and the force-indentation profiles.

All-atomic modeling provides valuable information about

the biomolecular transitions in the 1–100 ls timescale at

the microscopic level. Yet, performing MD simulations of

biological processes in implicit and explicit water on a

CPU and on a GPU in the ms-s timescale, under experi-

mentally relevant force loads, is virtually impossible even

for a small system. This renders direct comparison of the

results obtained from simulations and from dynamic

force measurements difficult. Here, we developed the

SOP-GPU software to characterize the mechanical dena-

turation of proteins and the physical properties of large-

size protein assemblies using experimental force loads

employed in AFM and laser-tweezer based dynamic force

assays. We demonstrated that SOP-GPU simulations

describe accurately the biomechanical unfolding reactions

at the slow experimental pulling speeds (vf 5 1–10 lm/

s), and that the results of SOP-GPU simulations agree

well with the results of all-atom MD simulations at the

faster force loads. The results obtained in this work show

clearly the high predictive capacity of the simplified

description of biomolecules empowered by advanced

computations on graphics processors, which allow to

span many decades of biological time.

The theoretical force-extension profiles, obtained from

pulling simulations at the experimental pulling speeds vf
5 1–10 lm/s for several protein systems, including the

C2A domain from human Syt1, and the gC-chain and

double-D fragment from human Fb, agree very well with

the experimental force spectra. We showed that for these

molecules the mechanical response depends rather sensi-

tively on the pulling speed vf and that the unfolding

mechanisms and kinetic pathways change when vf is

increased. We would like to emphasize that this could be

a general property shared by many biomolecules. Hence,

for the accurate interpretation of the experimental data,

dynamic force measurements in silico should be per-

formed using the experimentally relevant pulling speeds.

This can be achieved in reasonable wall-clock time using

the SOP-GPU package. More detailed characterization of

the mechanical properties of the C2A and C2B domains

from human Syt1 will be presented in a separate work

(manuscript in preparation). The results of the theoreti-

cal exploration of the molecular mechanisms underlying

the force-induced elongation of the single-chain models

of fibrin fibers (Fb)n will be given in a separate paper
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(manuscript in preparation). Computational studies of

the physical properties of viral capsids are under way

(unpublished data).

In this work, we focused on the Ca-based coarse-

grained model of a protein described by the two-body

potential energy terms. However, the developed formal-

ism can be used in conjunction with more sophisticated

biomolecular force fields to explore, for example, pro-

tein-protein and protein-DNA interactions. The formal-

ism can also be extended to include three-body (angle)

potentials to describe side chains. The numerical integra-

tion kernel can be modified to follow the Langevin dy-

namics in the underdamped limit to study the thermody-

namics of biomolecular transitions. Describing molecular

mechanism(s) and multiple pathways, underlying biomo-

lecular transitions, and resolving the entire distributions

of the molecular characteristics requires gathering of stat-

istically significant amount of data. This can be achieved

employing the many-runs-per-GPU approach, which can

also be used in parallel tempering algorithms, including

variants of the Replica Exchange Method, to resolve the

phase diagrams of biomolecules.

Due to the rapid evolution of the GPU hardware, the

simulation time will decrease significantly on graphics

processors with the MIMD architecture (Multiple

Instruction Multiple Data), such as the new Fermi plat-

form.75 The CUDA program, tested in this work, will be

able to run (with minor modifications) on this new

hardware making use of the increased processing resour-

ces, and will permit the theoretical exploration of a range

of interesting biological problems for which the experi-

mental data are already available. The presented formal-

ism can be applied to the studies of other systems,

including molecular motors, proteasomes, nucleosomes,

colloidosomes and liposomes. Beyond that, we note that

the cost of one GeForce GTX 295 graphics card with 480

processors is �500, that is, �1 per processor, which

makes GPUs a cost-efficient desktop-based alternative to

the more expensive computer clusters.
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