
Generation of random numbers on graphics processors:

Forced indentation in silico of the bacteriophage HK97

A. Zhmurov1,3, K. Rybnikov2, Y. Kholodov3 and V. Barsegov1,3∗

1Department of Chemistry, University of Massachusetts, Lowell, MA, 01854

2Department of Mathematics, University of Massachusetts, Lowell, MA, 01854

3Moscow Institute of Physics and Technology, Moscow region, Russia, 141700

(Dated: September 22, 2010)

The use of graphics processing units (GPUs) in simulation applications offers a sig-

nificant speed gain as compared to computations on central processing units (CPUs).

Many simulations require generation of a large number of independent random vari-

ables at each step. We present two approaches for implementation of random number

generators (RNGs) on the graphics processing unit (GPU). In the one-RNG-per-

thread approach, one RNG produces a stream of random numbers in each thread

of execution, whereas the one-RNG-for-all-threads method builds on the ability of

different threads to communicate, thus, sharing random seeds across the entire GPU

device. We used these approaches to implement Ran2, Hybrid Taus, and Lagged

Fibonacci algorithms on the GPU. We profiled the performance of these generators

in terms of the computational time, memory usage, and the speedup factor (CPU

time/GPU time). These generators have been incorporated into the program for

Langevin simulations of biomolecules fully implemented on the GPU. The ∼250-

fold computational speedup on the GPU allowed us to carry out the single-molecule

dynamic force measurements in silico to explore the mechanical properties of the

bacteriophage HK97 in the experimental subsecond timescale using realistic force-

loads. We found that the mechanical response of HK97 critically depends on the

conditions of force application, including the rate of change and geometry of the me-

chanical perturbation. Hence, the GPU-based implementation of RNGs, presented

here, in conjunction with Langevin simulations on the GPU makes it possible to

compare directly the results of dynamic force measurements in vitro and in silico,

and to interpret the experimental force spectra.

∗Corresponding author; phone: 978-934-3661; fax: 978-934-3013; Valeri Barsegov@uml.edu

2

I. INTRODUCTION

Graphics Processing Units (GPUs) are emerging as an alternative programming platform

that provides high raw computational power for scientific applications [1–7]. The computational

efficiency of contemporary GPUs reaching ∼1 TFlops for a single chip [8] enable one to utilize

GPUs as performance accelerators in compute-intensive molecular simulations [1, 2, 6, 7]. The

GPU-based calculations can be performed concurrently on many computational cores (Arith-

metic Logic Units, ALUs) grouped into multiprocessors, each with its own flow control and

cache units. For example, the number of multiprocessors per GPU can reach 15 on the most

up-to-date graphics cards (e.g., GeForce GTX 480 from NVIDIA) bringing the total number

of ALUs to 480 per chip. Although a GPU device has its own global memory with ∼10 times

larger bandwidth compared to DRAM on a CPU, the number of memory invocations (per ALU)

should be minimized to optimize the GPU performance. Hence, the computational task should

be compute-intensive so that, most of the time, the GPU performs computations rather than

reads/writes data [8]. This makes an N body problem into a prime candidate for the numerical

implementation on the GPU.

Langevin Dynamics (LD) simulations, Monte Carlo (MC) simulations, and Molecular Dy-

namics (MD) simulations in implicit solvent, widely used to access the microscopic transitions

in biomolecules, are among the many applications that can be implemented on a GPU. Since in

MD simulations in implicit solvent (water) and in LD simulations the effect of solvent molecules

is described implicitly, these methods require a reliable source of 3N normally distributed ran-

dom numbers, gi,α (i=1, 2, . . . , N , and α=x, y, and z), generated on a GPU at each step of a

simulation run, in order to compute the Gaussian random force Gi,α. For example, in MD simu-

lations in implicit water [9, 10], the dynamics of the i-th particle are governed by the equations of

motion for the particle position, dRi/dt=Vi, and velocity, midVi/dt=ξVi+f(Ri)+Gi(t), where

mi is the particle mass, ξ is the friction coefficient, and f(Ri)=−∂U/∂Ri is the molecular force

exerted on the i-th particle due to the potential energy U . In LD simulations, the dynamics of

the i-th Cα-particle are obtained by following the Langevin equation in the overdamped limit,

ξdRi/dt=f(Ri)+Gi(t) [11]. The equations of motion are propagated over many iterations of

the same simulation algorithm. In MC simulations, the results of multiple trials, each driven by

some random process, are combined to extract the average answer.

An algorithmic (pseudo-)random number generator (RNG), must have a long period and

must meet the conflicting goals of being fast while providing a large amount of random numbers

of proven statistical quality [12]. There is an extensive body of literature devoted to random

3

number generation on a CPU [13]. Yet, due to the fundamental differences in processor and

memory architecture of the CPU and GPU devices, the CPU-based methods cannot be easily

translated from the CPU to the GPU. One option is to have random numbers pre-generated on

the CPU, and use these numbers in the simulations on the GPU. However, this requires a large

amount of memory for an RNG. For a system of 104 particles in three dimensions, 3×104 random

numbers are needed at each simulation step. To generate these numbers, say, every 102−103

steps requires 3×106−3×107 random numbers, which takes 12−120MB of the GPU memory.

This might be significant even for the most up-to-date GPUs, which have limited memory, e.g.,

GeForce GTX 200 series (NVIDIA) with ∼1GB of memory.

We explored this option in Langevin simulations of N Brownian oscillators [11] using the

Hybrid Taus and additive Lagged Fibonacci algorithms described below. We compared the

computational time as a function of the system size N for three different implementations of

Langevin simulations: (1) random numbers and dynamics are generated on the CPU, (2) random

numbers, obtained on the CPU, are transfered to the GPU and used to generate dynamics on

the GPU, and (3) random numbers and dynamics are generated on the GPU. The results for the

2.83GHz Intel Core i7 930 CPU and for the 1.4GHz GeForce GTX 480 GPU show that starting

from ≈102 particles, it becomes computationally expensive to generate random numbers on the

CPU and transfer them to the GPU in order to generate stochastic trajectories on the GPU

(Fig. 1a). We found a substantial speedup for LD simulations fully implemented on the GPU,

compared to the CPU-based implementation of the same LD algorithm, which also depends

on the RNG choice and system size N (Fig. 1b). We observed a ∼10−250-fold speedup for

Langevin simulations of N=103−106 Brownian particles on the GPU (Fig. 1b). Hence, for

efficient molecular simulations in a stochastic thermostat, random numbers must be generated

on the GPU device.

While there exist stand-alone implementations of RNGs on the GPU, to fully utilize computa-

tional resources of the GPU an RNG should be incorporated into the main simulation program.

This allows to minimize read/write calls associated with invocation of the GPU global memory,

and to generate streams of random numbers ”on the fly”, i.e. at each step of a simulation run, us-

ing fast GPU shared memory. Here, we describe the methodology for generating pseudo-random

numbers on a GPU, which can be used in the GPU-based implementations of MD simulations

in implicit solvent, LD simulations, and MC simulations of biomolecules. In the next Section,

we focus on the Linear Congruential Generator (LCG), and the Ran2, Hybrid Taus, and Lagged

Fibonacci algorithms. These algorithms are used in Section III to describe the methodology for

the generation of (pseudo-)random numbers on the GPU. These RNGs have been incorporated

4

into the Langevin simulation program written in CUDA (dialect of C and C++ programming

languages). Pseudocodes are given in the Supporting Information (SI). We test the GPU-based

implementations of the LCG, Ran2, Hybrid Taus, and Lagged Fibonacci algorithms in Section

IV, where we present the application-based assessment of their statistical properties using the

Ornstein-Uhlenbeck process. We also profile these generators in terms of the computational

time and memory usage. These algorithms and the Cα-based coarse-grained Self Organized

Polymer (SOP) model [14–16] are used in Section V to perform single-molecule dynamic force

measurements in silico to characterize the physical properties of the viral capsid HK97, a λ-like

dsDNA bacteriophage [17], under the experimental force-loading conditions. This is a model

system for numerous studies of the kinetics of virus maturation, pressure-induced expansion,

and the mechanism(s) of infection of cells [18, 19]. All the Langevin simulations were carried

on the GPU GeForce GTX 480 (NVIDIA). The main results are discussed in Section VI. We

conclude in Section VII.

II. PSEUDO-RANDOM NUMBER GENERATORS: THE GPU PERSPECTIVE

In this paper, we focus on algorithmic RNGs - the most common type of deterministic random

number generators [20]. An RNG produces a sequence of random numbers, ui, which is supposed

to imitate independent uniform random variates from the unit interval (0, 1). In implicit water

models and in LD simulations of biomolecules, normally distributed random forces are used to

emulate stochastic kicks from the solvent molecules. To generate the distribution of random

forces, a common approach is to convert the uniformly distributed random variates (ui) into the

Gaussian distributed random variates (gi) using a variety of methods [21–23]. Here, we adopt

the most commonly used Box-Mueller transformation [23].

There are three main requirements for a numerical implementation of an RNG: (1) good

statistical properties, (2) high computational speed, and (3) low memory usage. Because a de-

terministic sequence of random numbers comes eventually to a starting point, un+p=un (Poincaré

recurrence), an RNG should have a long period p. An RNG must also be tested empirically for

randomness, i.e., for the uniformity of distribution and for the independence [12]. The statisti-

cal tests of randomness are accumulated, e.g., in the DIEHARD test suite and in the TestU01

library [12, 24–26]. In addition, an RNG must pass application-based tests of randomness that

offer exact solutions to the test applications. Using random numbers of poor statistical quality

might result in insufficient sampling, unphysical correlations [27, 28], and unrealistic results,

which might lead to errors in practical applications [29]. A good quality RNG should also

5

be computationally efficient so that random number generation does not become a major bot-

tleneck. For example, in Langevin simulations of proteins on a GPU, one can follow a long

trajectory over 1010 iterations. This requires ∼1015 random numbers for a system of N=105

particles. The condition of low memory usage is also important since contemporary graphics

processors have low on-chip memory, ∼ 64KB per multiprocessor (graphics cards with Fermi

architecture), compared to ∼2MB memory on the CPU. Hence, an efficient RNG algorithm

must use a limited working area without invoking the relatively slow GPU global memory.

A fast RNG employs simple logic and a few state variables to store its current state, but this

may harm its statistical properties. On the other hand, using a more sophisticated algorithm

with many arithmetic operations or combining several generators into a hybrid generator allows

to improve statistics, but such generators are slower and use more memory. Here, we focus on

some of the most widely used algorithms, Linear Congruential Generator (LCG) [13], and Ran2

[13], Hybrid Taus [13, 20, 30, 31], and Lagged Fibonacci algorithms [13, 32], briefly reviewed

in Appendix A. LCG can be used in performance benchmarks since it employs a very fast

algorithm. Ran2 is a standard choice for many applications due to its long period p>1018, good

statistical quality, and high computational performance on the CPU. However, Ran2 requires

a large amount of on-chip GPU local and global memory to store its current state. Hybrid

Taus is a prime example of how several simple algorithms can be combined to improve the

statistical characteristics of the random numbers produced. It scores better in terms of the

computational speed on the GPU than KISS, the best known combined generator [33], and its

long period p>1036 makes it a good choice for the GPU-based computations. Lagged Fibonacci

employs simple logic while producing random numbers of high statistical quality [12]. It is used

in distributed MC simulations, and it can also be utilized in GPU-based computations. We

employed the additive Lagged Fibonacci RNG, which generates floating point variates directly,

without the usual floating of random integers.

III. LCG, RAN2, HYBRID TAUS, AND LAGGED FIBONACCI ON A GPU

A. Basic ideas

To solve an N body problem on a GPU, an RNG should produce random numbers simul-

taneously for all particles. One possibility is to build an RNG into the main simulation kernel

to maximize the amount of computations on a GPU while minimizing the number of calls of

the GPU global memory (read/write operations). To fully utilize the GPU resources, the total

6

number of threads should be ∼10-times larger than the number of computational cores, so that

none of the cores awaits for the others to complete their tasks. Here, we employ the cycle

division paradigm [32]. The idea is to partition a single sequence of random numbers among

many computational threads running concurrently across an entire GPU device, each producing

a stream of random numbers. Since most RNG algorithms are based on sequential transforma-

tions of the current state (LCG, Hybrid Taus and Ran2), the most common way of partitioning

the sequence is to provide each thread with different seeds while also separating the threads

along the sequence to avoid the interstream correlations. This is the basis of the one-RNG-per-

thread approach (Fig. 1a in SI). On the other hand, Mersenne Twister and Lagged Fibonacci

algorithms, which employ recursive transformations, allow one to leap ahead in a sequence and

to produce the (n + 1)-st random number without knowing the n-th number [32–34]. The leap

size, which, in general, depends on parameters of an RNG, can be adjusted to the number of

threads (number of particles N), or multiples of N (M×N). Then, all N random numbers can

be obtained simultaneously, i.e. the j-th thread produces numbers j, j+N , j+2N. . ., etc. At

the end of each simulation step, threads must be syncronized to update the current RNG state.

Hence, the same RNG state can be used by all threads, each updating just one elements of the

state. We refer to this as the one-RNG-for-all-threads approach (Fig. 1b in SI).

B. One-RNG-per-thread approach

The idea is to run the same RNG algorithm in each thread to generate different subsequences

of the same sequence of random numbers, but starting from different initial seeds. The CPU

initiates N sets of random seeds (one for each RNG) and passes them to the GPU global memory

(Fig. 2 in SI). To exclude correlations, these sets should come from an independent sequence of

random numbers. Each thread on the GPU reads its random seeds from the GPU global memory

and copies them to the GPU local (per thread) memory or shared (per thread block) memory.

Then, each RNG generates random numbers without using the slow GPU global memory. At

the end of a simulation step, each RNG saves its current state to the global memory and frees

shared memory. Since each thread has its own RNG, there is no need for threads synchronization.

However, when particles interact, threads must be synchronized. In the simulations, arrays of

initial seeds and the current state should be arranged for coalescent memory read to speedup

the global memory access.

In the one-RNG-per-thread setting, an RNG should be very light in terms of the memory

usage. Small size of on-chip memory can be insufficient to store the current state of an RNG

7

with complex logic. The amount of memory required to store the current state is proportional

to the number of threads (number of particles N). Hence a significant amount of memory has

to be allocated for all RNGs to describe a large system. For example, LCG uses one integer

seed to store its current state, which takes 4 bytes per thread (per generator) or ∼4MB of

memory for 106 threads/particles, whereas Hybrid Taus uses 4 integers, i.e. 16MB of memory.

These are acceptable numbers, given hundreds of megabytes of the GPU memory. By contrast,

Ran2 uses 35 long integers and a total of 280 bytes per thread, or ∼280MB of memory (for

106 threads/particles). As a result, not all seeds can be stored in on-chip (local or shared)

memory (∼64KB on GPUs with Fermi architecture), and the GPU global memory has to be

accessed to read/update the current state. In addition, less memory becomes accessible to other

computational routines. This might prevent Ran2 from being used in the simulations of large

systems on some graphics cards, including GeForce GTX 280 and GTX 295 (NVIDIA), with

768MB of global memory (per GPU). Yet, this is not an issue when using high-end graphics

cards, such as Tesla C2070 with 6GB of global memory. In this paper, we utilized the one-RNG-

per-thread approach to develop the GPU-based implementations of the LCG, Hybrid Taus and

Ran2 algorithms (Fig. 2 in SI). Pseudocodes are presented in Section I in SI. Numerical values

of the constant parameters for LCG, Ran2, and Hybrid Taus, can be found, respectively, in

Appendix A [12], in Ref. [13], and in Section I in SI.

C. One-RNG-for-all-threads approach

In the one-RNG-for-all-threads approach, one can utilize a single RNG by allowing all com-

putational threads to share the state of a generator. This can be used in algorithms that are

based on the recursive transformations, i.e. xn=f(yn−r, yn−r+1, . . . yn−k), where r is a recurrence

degree and k>r is a constant parameter, to obtain a random number at the n-th step from

the state variables generated at the previous steps n−r, n−r+1, . . ., n−k. If a sequence of

random numbers is obtained simultaneously in N threads, each generating just one random

number, then N random numbers are produced at each step. Given k>N , all the elements of

the transformation have been obtained at the previous steps, in which case they can be accessed

without threads synchronization. One of the algorithms that can be implemented on the GPU

using the one-RNG-for-all-threads approach is additive Lagged Fibonacci (Fig. 3 in SI) [34].

A pseudocode is presented in Section II in SI. When one random number is computed in each

thread and when sl>N and ll−sl>N , where ll and sl are the long and short lags, N random

numbers can be obtained simultaneously on the GPU device; sl and ll could be taken to be

8

sufficiently large to guarantee good statistical properties of the random numbers produced.

To initialize the Lagged Fibonacci RNG on the GPU, ll integers are allocated on the CPU.

On the GPU, each thread reads two integers of the sequence (one for ll and the other for sl),

generates the resulting integer, and saves it to the location in the GPU global memory, which

corresponds to ll. Setting sl>N and ll−sl>N guarantees that the same position in the array

of integers (current state variables) will not be accessed by different threads at the same time.

The moving window of N random numbers, updated in N threads is moving along the array

of state variables, leaping forward by N positions at each step. Importantly, a period of the

Lagged Fibonacci generator, p∼2ll+31, can be adjusted to the system size N by assigning large

values to sl and ll, so that p≫N×S, where S is the number of simulation steps. Varying ll and

sl does not affect the execution time, but changes the size of the array of state variables, which

scales linearly with ll, the amount of integers stored in the GPU global memory. Large ll values

is not an issue even when ll∼106, which corresponds to ∼4MB of the GPU global memory.

Numerical values of the constant parameters for Lagged Fibonacci are given in Table I in SI.

IV. BENCHMARK TESTING

A. Test of randomness: Ornstein-Uhlenbeck process

To assess the statistical performance of the GPU-based realizations of LCG, Ran2, Hybrid

Taus, and Lagged Fibonacci, we carried out Langevin simulations of N independent Brownian

oscillators [11] on the GPU. Each particle evolves on the harmonic potential, U(Ri)=kspR
2
i /2,

where Ri is the i-th particle position and ksp is the spring constant, and is subject to random

force. We employed this analytically tractable model to compare directly the simulation output

with the exact results that would be obtained with truly random numbers. The Langevin dynam-

ics ξdRi/dt=−∂U(R1, R2, . . . , RN)/∂Ri + Gi(t), widely used in the simulations of biomolecules

[14–16, 35, 36], were obtained numerically using the first-order integration scheme [37],

Ri(t + ∆t) = Ri(t) + f(Ri(t))∆t/ξ + gi(t)
√

2kBTξ/∆t, (1)

where f(Ri)=−∂U(R1, R2, . . . , RN)/∂Ri is the deterministic force, and gi are the normally dis-

tributed random variates (with zero mean and unit variance) used to obtain the Gaussian ran-

dom forces Gi(t)=gi(t)
√

2kBTξ/∆t. Numerical algorithms for the GPU-based implementation

of Langevin simulations, i.e. evaluation of forces and numerical integration of the equations of

motion (Eq. (1)), are presented in Ref. [38].

9

Numerical calculations for N=104 particles were carried out with the time step ∆t=1ps

at room temperature T=300K, starting from the initial position R0=10nm, and using the

diffusion constant D=0.25nm2/ns. A soft harmonic spring (ksp=0.01pN/nm) allowed us to

generate long 1ms trajectories over 109 steps. The average position 〈R(t)〉 and the two-point

correlation function C(t)=〈R(t)R(0)〉, obtained from the simulations, are compared in Fig. 2

with their exact counterparts [11, 39], 〈R(t)〉=Ri(0)exp [−t/τ] and C(t)=(kBT/ksp)exp [−t/τ],

where τ=ξ/ksp is the characteristic time. We see that all RNGs describe well the exact Brownian

dynamics except for the LCG. Indeed, 〈R(t)〉 and C(t), obtained using Ran2, Hybrid Taus, and

Lagged Fibonacci RNGs, practically collapse on the theoretical curve of these quantities. By

contrast, using LCG results in a repeated pattern for 〈R(t)〉 and in the unphysically short-lived

correlations in C(t). At longer times, 〈R(t)〉 and C(t), obtained from simulations, deviate from

the theoretical curves due to a soft harmonic spring and insufficient sampling (Fig. 2).

B. Computational performance

We benchmarked the computational efficiency of the GPU-based realizations of the Ran2,

Hybrid Taus, and Lagged Fibonacci algorithms using Langevin simulations of N Brownian

oscillators in three dimensions. For each system size N , we ran one trajectory for 106 simulation

steps. All N threads were synchronized at the end of each step to emulate an LD simulation

run of a biomolecule on a GPU. The execution time and memory usage are profiled in Fig. 3.

We find that Ran2 is the most demanding generator. The use of Ran2 in Langevin simulations

of a system of N=104 particles requires additional ∼264 hours of wall-clock time to obtain a

single trajectory over 109 steps. The memory demand for Ran2 is quite high, i.e. >250MB for

N=106 (Fig. 3b). Because in biomolecular simulations a large memory area is needed to store

parameters of the force field, Verlet lists, interparticle distances, etc., the high memory demand

might prevent one from using Ran2 in the simulations of a large system. Also, implementing

Ran2 in Langevin simulations on the GPU does not lead to a substantial speedup (Fig. 3a).

By contrast, Hybrid Taus and Lagged Fibonacci RNGs are both light and fast in terms of the

memory usage and the execution time (Fig. 3). These generators require a small amount of

memory, i.e. <15−20MB, even for a large system of N=106 particles (Fig. 3b).

In general, the number of memory calls scales linearly with N . Because on a GPU the compu-

tational speed even of a fast RNG is determined mostly by the number of memory calls, multiple

reads/writes from/to the GPU global memory can prolong significantly the computational time.

We profiled the LCG, Ran2, Hybrid Taus, and Lagged Fibonacci RNGs, which use, respectively,

10

1, 40, 4, and ∼3 state variables per thread, in terms of the number of memory calls per simula-

tion step. The state size for Lagged Fibonacci depends on the choice of ll and sl (Appendix A).

The LCG, Hybrid Taus and Lagged Fibonacci use 4−16 bytes/thread, which is quite reasonable

even for a large system of N=106 particles. However, Ran2 requires 280 bytes/thread which is

significant for a large system (Table I). Since Ran2 has large size of the state, saving/updating

its current state using the GPU local or shared memory is not efficient computationally. Also,

Ran2 employs long 64-bit variables, which doubles the amount of data (memory), and requires

4/4 read/write memory calls (7/7 read/write calls are needed to generate 4 random numbers).

Hybrid Taus uses the GPU global memory only when it is initialized, and when it updates

its current state. Since it uses 4 state variables, 4/4 read/write calls per thread are required

regardless of the amount of random numbers produced (Table I). The Lagged Fibonacci RNG

uses 2 random seeds, which results in 2/1 read/write calls per random number (8/4 read/write

calls for 4 random numbers). The execution time for Hybrid the Taus and Lagged Fibonacci

RNGs scales sublinearly with N (i.e. remains constant) for N<104 particles due to insufficient

parallelization of the GPU device, but grows linearly with N for larger systems when all ALUs

on the GPU become fully subscribed (Fig. 4). It takes about the same time to generate random

numbers using these generators and to propagate Langevin dynamics to the next step (Fig. 4).

This is a high performance level given the fact that the potential function does not involve

long-range interactions.

V. FORCED INDENTATION IN SILICO: BACTERIOPHAGE HK97

We employed the Hybrid Taus and additive Lagged Fibonacci generators to develop the GPU-

based implementation of Langevin simulations using a Cα-based Self Organized Polymer (SOP)

coarse-grained model of the protein chain. All the steps of the algorithm, fully implemented

on the GPU, have been converted into a standard CUDA code (SOP-GPU package) [38]. The

SOP model (Appendix B [14]) describes well the mechanical properties of proteins, including the

Green Fluorescent Protein [40], the tubulin dimer [41], and kinesin [42]. This model has also been

used to explore the kinetics and to resolve the free energy landscape of tetrahymena ribozyme

[14], riboswitch aptamers [43], GroEL [44], protein kinase A [45], and myosin V [46]. We used the

SOP model and Langevin simulations on the GPU to carry out single-molecule dynamic force

measurements in slilco of the mechanical indentation of the bacteriophage HK97. All-atom MD

simulations cannot be used to resolve the micromechanics of supramolecular biological assemblies

under the experimentally relevant force-loads (vf≈0.1−10µm/s) in the experimental subsecond

11

timescale [38, 47]. Besides, topology and the arrangement of the secondary structure elements

into the overall structure, rather than the atomic details, govern the large-scale conformational

transitions [38, 48].

Bacteriophage HK97 (115, 140 residues) [18] is made of 420 copies of the gp5 protein [17] and

is formed by 60 icosahedral units, each composed of 7 domains A through G. Domains A−F

form 60 hexamers, and domain G binds to 5 G chains to form 12 pentamers. Each subunit

is joined to two of its neighbors by ligation of Lys169 to Asp356, which results in formation

of the topologically linked protein rings (catenanes). The capsid outer radius is X≈32nm and

the average wall thickness is ∆X≈2.1nm (in the head II state). The HK97 varus maturation

involves pressure-induced capsid expansion due to the dsDNA packaging [18]. Yet, the me-

chanical properties of this infectious agent have not been investigated neither experimentally

nor computationally. We probed the mechanical reaction of the bacteriophage HK97 in the

head II state (Protein Data Bank code: 2FT1) by indenting it with the time-dependent force

fext(t)=rf t, where rf=κvf is the force-loading rate, and κ and vf are, respectively, the cantilever

spring constant and the tip velocity. We analyzed the dependence of the physical properties

of HK97 on the rate of change rf and geometry of mechanical perturbation. The effect of

geometry was studied using the spherical tip of different radius R.

We generated the force-indentation curves (FZ curves), which quantify the mechanical re-

sponse of HK97 as a function of the distance traveled by the cantilever Z [49, 50]. We varied

the speed and radius of the cantilever tip by setting vf=2.5µm/s (in the experimental range

[51]), 25µm/s, and 250µm/s, and using R=5nm, 10nm, and 25nm. For each set of values of

vf and R, we generated 3 force-indentation curves at room temperature (T=300K) with the

time step ∆t=20ps using the bulk water viscosity, which corresponds to the friction coefficient

ξ=7.0×105pNps/nm. It took ∼34 days (109 steps) and ∼3.4 days (108 steps) of wall-clock time

to generate a singe indentation trajectory of length 20ms and 2ms for vf=2.5 and 25µm/s,

respectively, on the GPU (GeForce GTX 480). For comparison, it would take ∼120 and ∼12

months, respectively, to complete the same jobs on the CPU Intel Core i7 930. The typical

FZ curves, the number of native contacts Q, and the capsid spring constant K are displayed in

Fig. 5. We estimated the values of K, which quantifies the elastic component of the mechanical

response of HK97, using the formula 1/KFZ=1/κ+1/K [49, 52] for the spring constant for the

combined system (capsid plus tip), KFZ , extracted from the FZ curves.

The mechanical response of HK97 shows stochastic variation at a slow force-load vf=2.5µm/s

(Fig. 5a), but it becomes more ”deterministic” when vf is increased (Fig. 5b and c). The slope

of the FZ curves (proportional to K), while increasing with vf and R, fluctuates for all values of

12

vf and R used, which implies that the capsid elasticity is a dynamic, rather than static, prop-

erty. Interestingly, K increases from 0.01−0.025pN/nm at vf=2.5µm/s to 0.05−0.075pN/nm at

vf=25µm/s, and to 0.2−0.35pN/nm at vf=250µm/s (Table II). This result demonstrates that

the capsid wall becomes stiffer when indented faster, and implies that its elasticity also depends

on the geometry of a force-bearing load. The buckling transitions were observed only at the

slowest force-load of vf=2.5µm/s (Fig. 5a) when a large 25nm tip was used. When the capsid

buckles, K first increases and then dicreases with Z while the number of native contacts Q,

stabilizing the virus shell structure, decreases monotonically with Z. The buckling transitions

set in at Z≈25nm, at which point K drops to zero signifying a loss of mechanical resistance

(Fig. 5a). At vf=2.5µm/s and for R=10nm, the indentation is monotonic (no buckling); how-

ever, at vf=2.5µm/s and for R=5nm, the indentation continues up to Z≈55nm, at which point

the mechanical fracture occurs (Fig. 5a). The local fracture around the area where the tip pen-

etrates the viral shell is associated with partial unfolding and disruption of some of the native

contacts, which is reflected in the sudden drop in Q (Fig. 5a). The native contacts form again

as the tip passes through the capsid wall, resulting in the increase in Q, which implies that the

fracture is reversible.

The buckling transitions were not detected at the faster loads vf=25µm/s and 250µm/s

(Figs. 5b and c). At vf=25µm/s, the dependence of the mechanical reaction on Z is monotonic

only for a large 10nm and 25nm tip. For a small 5nm tip, a gradual indentation is interrupted

by the capsid fracture at Z≈65nm. This results in a loss of capsid elasticity (Fig. 5b), which is

reflected in a sudden drop in Q due to the disruption of the native contacts, and in the decrease

of K to zero (Fig. 5b). At vf=250µm/s, we obtained the monotonic FZ curves only when the

capsid was indented with a large tip (R=25nm). Indenting with smaller 5nm and 10nm tips

resulted in the capsid fracture at Z≈65nm and Z≈120nm, respectively (Fig. 5c). The structural

damage was localized to the residue positions affected by the tip moving downward, and the

recovery of the native contacts was partial for R=10nm and full for R=5nm (Fig. 5c). The

structural analysis of bacteriophage HK97 has revealed that the ratio of the wall thickness to

the outer radius is ∆X/X≈0.065≪1. This allowed us to use the thin-shell approximation to

connect the spring constant K with the Young’s modulus Y , using the formula K=αY ∆X2/X,

where α is the proportionality factor [53]. Assuming that α≈1, we estimated the modulus Y ,

which characterizes the “in-plane” elasticity of the viral shell. We also evaluated the energy costs

for the structural damage (spherical cavity) ∆Ef and for the buckling ∆Eb, and calculated the

critical pressure pc=fc/A, where A is the contact area on the capsid outer surface impacted by

the cantilever tip. The numerical values of Y , pc, ∆Eb, and ∆Ef are accumulated in Table II.

13

VI. DISCUSSION

A. Choosing RNG for GPU-based computations

Random number generators are used in many computer applications such as simulations of

stochastic systems, probabilistic algorithms, and numerical analysis among many others. The

highly parallel architecture of the GPU provides an alternative computational platform that

allows one to utilize multiple ALUs on a single processor. This comes at a price of having

smaller cache memory and reduced flow control. Hence, to harvest raw computational power

offered by the GPU, one needs to re-design computational algorithms that have been used on the

CPU for many decades. Here, we described two general methods for generating pseudo-random

numbers on the GPU.

In the one-RNG-per-thread approach, the same RNG algorithm is executed in each com-

putational thread (for each particle), a procedure used in the CPU-based methods. In the

one-RNG-for-all-threads setting, one can utilize the ability of different threads to communicate

across the entire GPU device. We employed these methods to develop the GPU-based realiza-

tions of the Ran2, and Hybrid Taus generators (Fig. 2 in SI), and the additive Lagged Fibonacci

RNG (Fig. 3 in SI). The Hybrid Taus and Lagged Fibonacci generators provide random numbers

at a computational speed almost equal to that of the LCG, and the associated memory demand

is rather low (Fig. 3). The long period of these RNGs is sufficient to describe the dynamics of

a very large system (N>106 particles) on a long timescale (>109 steps). Ran2 is a well tested

generator of proven statistical quality [13], but it works only ∼10−15-times faster on the GPU

and requires a large memory area (Fig. 3). By contrast, employing the Hybrid Taus and Lagged

Fibonacci algorithms results in an impressive 200−250-fold speedup for a large system of as

many as 106 particles (Fig. 1).

As an application-based test of randomness, we carried out Langevin simulations of N Brow-

nian oscillators (Ornstein-Uhlenbeck process). We found an excellent agreement between the

stochastic trajectories, obtained analytically and computationally by using the Hybrid Taus,

Ran2 and Lagged Fibonacci algorithms (Fig. 2). We also applied some stringent statistical

tests to access the statistical properties of random numbers produced using the developed GPU-

based implementation of the Hybrid Taus and Lagged Fibonacci RNGs. We found that the

Hybrid Taus RNG does not fail a single tests in the DIEHARD test suite [24] and passes both

the BigCrush battery and the SmallCrush battery of tests in the TestUO1 package [12]. The

Lagged Fibonacci RNG, even with a small short lag sl=1252, does not fail any test in the

14

DIEHARD test suite, and passes the BigCrush in the TestU01 package. We recommend these

generators for Langevin simulations, for Monte Carlo simulations, and for MD simulations in

implicit solvent of large biomolecular systems. Given their high statistical quality, these RNGs is

a reasonable choice for the GPU-based implementations of molecular simulations. These RNGs

can also be used in parallel tempering algorithms, including variants of the Replica Exchange

method. Using the Hybrid Taus algorithm results in a faster acceleration, compared to the

Lagged Fibonacci generator, but the latter can be ported to the GPU with MIMD architecture

(Multiple Instruction Multiple Data).

B. Dynamic signatures of the force-indentation spectra

Streered Molecular Dynamics (SMD) simulations are currently limited to a 10−50nm length

scale and 0.1−10µs duration [1, 54, 55]. Hence, it is virtually impossible to span the experi-

mental millisecond timescale using SMD simulations. For example, it takes 800, 000 CPU hours

to obtain 1ns MD trajectories for the southern bean mosaic virus (4.5×106 atoms) on an SGI

Altix cluster [47]. Computational approaches based on the elastic network normal mode analysis

allow mostly for the theoretical exploration of equilibrium properties of biomolecules [56, 57].

We utilized the structure-based coarse-grained description of proteins, where each residue po-

sition is specified by a single interaction center (Cα-atom), to carry out single-molecule forced

indentation experiments in silico of the bacteriophage HK97. The hundred-fold computational

acceleration achieved on the GPU (GeForce GTX 480), compared to the heavily tuned CPU

version of the same program (Fig. 1), allowed us to explore the physical properties of this larga-

size supramolecular biological assembly (105 particles) in the subsecond timescale [38]. We used

the experimental force-loading conditions, employed in the AFM based dynamic force measure-

ments (force-ramp), including the cantilever spring constant κ, and the spherical tip velocity vf

and size R. We found that the microscopic mechanical response of the virion HK97 depends

rather sensitively on the rate (vf) and geometry (R) of the force application.

We observed a whole spectrum of biomechanical reactions for HK97 in the far-from-

equilibrium regime from the gradual indentation at low and moderately high forces to buckling

at the intermediate forces, and to the mechanical fracture at high forces (Fig. 5). These dynamic

signatures in the theoretical force spectra might reflect the general physical properties, shared

by many virus shells. We found that virus shell elasticity is a fluctuating dynamic property,

rather than an average static characteristic, which also varies with the rate of change of the me-

chanical perturbation. The spring constant of ≈0.01−0.02N/m for the bacteriophage HK97,

15

obtained at the experimental pulling speed vf=2.5µm/s used in the AFM based dynamic force

spectroscopy, agrees with the experimental estimates of this parameter for empty viral shells

[52]. Our finding that K might also change with size of the load-bearing tip implies that the

spring constant of a virus shell K, reported in the experimental AFM studies, is a local charac-

teristic. Indeed, the larger the tip the more structural units cooperate to withstand the external

mechanical perturbation. Hence, larger tips comparable in size with the dimensions of the viral

shell in question should be used to average over local variations in the mechanical response. In

addition, K might vary depending on where on the shell surface the tip presses against the virus

shell [47], but we leave this important aspect for future studies.

We found that a temporary loss of the elastic response of a virus shell, when K rapidly

decreases to zero, might occur as a result of buckling transition or mechanical fracture. In the

event of buckling, the capsid shell rapidly regains its elasticity, which results in the subsequent

increase of K. A sudden drop in K indicates, rather, the onset of the mechanical fracture due

to the structural damage associated with partial disruption of the network of native contacts,

which results in the local unfolding transitions. This process is reversible, as the native contacts

tend to reform soon after the cantilever tip has passed through the capsid wall (Fig. 5). These

results agree well with the experimental observations on other virions [49, 52]. We did observe

the expected crossover from purely elastic behavior at low forces to plastic behavior at higher

forces [47], which also follows from an observation that K tends to decrease at longer Z values,

but this effect is not well-pronounced, which might be due, in part, to presence of the topological

links [58]. This rare feature of the molecular architecture of bacteriophage HK97 adds to the

structural integrity and enhances the elastic component of this supramolecular assembly. In fact,

the observed sudden drops in Q were mostly due to the disruption of the intracapsomer native

contacts, which stabilize the native folded state of the capsid structural units, rather than the

intercapsomer contacts, which mediate the capsomer-capsomer protein interactions. Detailed

analysis of the transient structures, obtained in the course of the force-driven indentation of

bacteriophage HK97, and structural underpinnings underlying the mechanical failure will be

presented in a separate paper.

The onset of mechanical failure (buckling) is controlled by a universal physical characteristic

- the Foppl-von Kármán (FvK) number γ [59]. For a thin spherical shell, it is defined as

γ=Y X2/k, where k is the “out-of-plane” bending modulus. In general, for a buckling transition

to occur in a shell of fixed radius X, the ratio of the extent of “in-plane” stretching (Y X2) and

the degree of “out-of-plane” bending (k) must be large so that γ exceeds some critical value

∼103 [59]. The results obtained for vf=2.5µm/s show that the buckling regime sets in when

16

the capsid is indented with the tip comparable with the capsid size, i.e. R∼X (Fig. 5a). In

this case, the tip pushing downward excites mostly the in-plane stretching degrees of freedom,

and Y X2≫k. On the other hand, the fracture occurs when smaller tips are used, i.e. when

R<X. Here, the tip motion excites the out-of-plane bending modes, and Y X2≪k. Hence,

both dynamic regimes can be accessed by controling the geometry of the force application. In

addition, the results obtained for the faster force-loads (vf=25 and 250µm/s) indicate strongly

that whether the mechanical failure (buckling or fracture) occurs also depends on the rate of

change of the applied force f(t) (Fig. 5b and c). Hence, theoretical models should be extended

to account for dynamic coupling of the in-plane modes and the out-of-plane modes of motion

and for the far-from-equilibrium conditions of propagation and distribution of the mechanical

stress on the spherical surface.

The Young’s modulus Y was also found to depend on the rate of change and geome-

try of the pushing force (Table II). At the experimental value of vf=2.5µm/s, the modulus

Y =60−160MPa for HK97 is comparable with Y =140MPa for the empty CCMV virus capsid

[52], but is less than Y =1.8GPa for the bacteriophage φ29 [49] (Table II). The empty shell

HK97 is capable of withstanding the mechanical pressures of the order of 60−140atm, which is

comparable with effective pressure inside the pacteriophage φ29 due to DNA packaging. These

results show that dynamic force assays in silico, carried out under the experimentally relevant

force-loads, can be used to explore the limits of the elasticity of virus shells and to estimate

the maximum internal pressure due to the encapsulated genetic material. We found that with

the tip-sphere moving at vf=2.5µm/s, the energy it would cost to create a structural damage,

i.e. a spherical cavity (of radius 5nm) on the outer surface of the capsid HK97, or the en-

ergy for fracture, ∆Ef=2.7×10−17Nm, is about twice the energy required to buckle the capsid,

∆Eb=1.4×10−17Nm. Interestingly, for the same cavity size, the energy for fracture grows with

the rate of change of the applied force (Table II).

VII. CONCLUSION

The development of new Fermi architecture (NVIDIA) and Larrabee architecture (Intel),

is an important step for general purpose GPU computing. The high speed interconnection

network will provide a fast interface for threads communication. These advances will enable

the programmer to distribute a computational workload among the many cores on the GPU

more efficiently, and to reach an even higher performance level. In this regard, the developed

GPU-based implementation of additive Lagged Fibonacci RNG can be ported to new graph-

17

ics processors with minor modifications. In a context of biomolecular simulations, this will

make it possible to compute random forces using the much needed synchronization of threads

over the entire GPU device. This makes the one-RNG-for-all-threads method of generation

of pseudo-random numbers on the GPU, where the thread synchronization is utilized, all the

more important. This method can also be used to develop the GPU-based implementations of

the Mersenne Twister algorithm [60], and several other algorithms, including multiple recursive

generator (MRG) and linear/generalized shift feedback register (LSFR/GSFR) generators, such

as 4-lag Lagged Fibonacci algorithm [12, 33].

The developed GPU-based realizations of the Hybrid Taus and Lagged Fibonacci genera-

tors enable one to carry out Langevin simulations of large-size supramolecular assemblies in

the experimental subsecond timescale. The presented formalism can be applied to study the

biomechanical reactions in a range of biological systems, including molecular motors, nucleo-

somes, and proteasomes among many others. Understanding the micromechanical properties of

nanometer-scale protein shells of plant and animal viruses is important for virus biology, mate-

rials engineering, and for nanotechnological applications. Here, we utilized the Self Organized

Polymer (SOP) model and Langevin simulations, fully implemented on the GPU (SOP-GPU

package), to perform the dynamic force spectroscopic measurements in silico of the mechanical

properties of the bacteriophage HK97 using realistic conditions of force application. These

computer experiments mimic the AFM based dynamic force measurements on biomolecules in

vitro [49, 51, 52, 61, 62], thus, allowing for direct comparison of the simulation output with the

experimental data. The observed dynamic signatures for continuous transitions (indentation),

phase transitions (buckling), and structural failure (fracture) can be used to provide meaningful

interpretation of the force peaks and kinks in the experimental force-indentation curves.

Acknowledgements: Acknowledgement is made to the donors of the American Chemical

Society Petroleum Research Fund (grant PRF #47624−G6) for partial support of this research

(VB). This work was also supported in part by the grant (#09−0712132) from the Russian

Foundation for Basic Research (VB, YK and AZ).

Appendix A: LCG, Ran2, Hybrid Taus and Lagged Fibonacci algorithms

LCG: The Linear Congruential Generators (LCGs) use a transitional formula,

xn = (axn−1 + c) mod m, (A1)

18

where m is the maximum period, and a=1664525 and c=1013904223 are constant parameters

[13]. To produce a uniformly distributed random number, xn is divided by 232. Assuming a

32-bit integer, the maximum period can be at most p=232, which is far too low. LCGs also have

known statistical flows [12]. If m=232, one can neglect mod m operation as the returned value is

low-order 32 bits of the true 64-bit product. Then, the transitional formula reads xn=axn−1+c,

which is the so-called Quick and Dirty or ranqd2 generator (simplified LCG). Quick and Dirty

LCG is very fast as it takes only a single multiplication and a single addition to produce a

random number, and it uses one integer to describe its current state.

Ran2: Ran2, one of the most popular RNGs, combines two LCGs and employs randomization

using some shuffling procedure [13]. Ran2 has a long period and provides random numbers of

very good statistical properties [12]. It is one of a very few generators that does not fail a single

statistical test. Ran2 is reasonably fast, but it involves long integer arithmetic (64-bit logic) -

a computational bottleneck for contemporary GPUs, and it requires a large amount of memory

to store its current state.

Hybrid Taus: Hybrid Taus [20] is a combined generator that uses LCG and Tausworthe

algorithms. Tausworthe taus88 is a fast equidistributed modulo 2 generator [30, 31], which

produces random numbers by generating a sequence of bits from a linear recurrence modulo 2,

and forming the resulting number by taking a block of successive bits. In the space of binary

vectors, the n-th element of a vector is constructed using the linear transformation,

yn = a1yn−1 + a2yn−2 + . . . akyn−k, (A2)

where an are constant coefficients. Given initial values, y0, y1, . . . yn−1, the n-th random integer

is obtained as xn=
∑L

j=1
yns+j−12

−j, where s is a positive integers and L=32 is the integer size

(machine word size). Computing xn involves performing s steps of the recurrence, which might

be costly computationally. Fast implementation can be obtained for a certain choice of param-

eters: when ak=aq=a0=1, where 0<2q< k and an=0 for 0<s≤k−q<k≤L, the algorithm can

be simplified to a series of binary operations [31]. Statistical characteristics of random num-

bers produced using taus88 alone are poor, but combining taus88 with LCG removes all the

statistical defects [20]. In general, statistical properties of a combined generator are better than

those of its components. When periods of all components are co-prime numbers, a period of a

combined generator is the product of periods of all components. A similar approach is used in

the KISS generator [33]. However, multiple 32-bit multiplications, used in KISS, might harm

its performance on the GPU. The period of the Hybrid Taus is the lowest common multiplier

of the periods of three Tausworthe steps and one LCG. We used parameters that result in the

19

periods p1≈231, p2≈230, and p3≈228 for the Tausworthe generators and the period p4=232 for

the LCG, which makes the period of the combined generator equal ∼2121>1036. Hybrid Taus

uses small memory area since only four integers are needed to store its current state.

Lagged Fibonacci: The Lagged Fibonacci algorithm is defined by the recursive relation,

xn = f(xn−sl, xn−ll) mod m, (A3)

where sl and ll are the short lag and the long lag, respectively (ll>sl), m defines the maximum

period and f is a function that takes two integers xn−sl and xn−ll to produce integer xn. The most

commonly used functions are multiplication, f(xn−sl, xn−ll)=xn−sl∗xn−ll (multiplicative Lagged

Fibonacci), and addition, f(xn−sl, xn−ll)=xn−sl+xn−ll (additive Lagged Fibonacci). Random

numbers are generated from the initial set of ll integer seeds. To achieve the maximum period

∼ 2ll−1×m, the long lag ll should be set equal the base of a Mersenne exponent, and the short

lag sl should be taken so that the characteristic polynomial xll+xsl+1 is primitive. Also, sl

should not be too small nor too close to ll. It is recommended that sl≈ρ×ll, where ρ≈0.618

[12]. When single precision arithmetic is used, the mod m operation can be omitted by setting

m=232.

Appendix B: Self Organized Polymer (SOP) model

We adapted the Self Organized Polymer (SOP) model [14–16], where each residue is described

using a single interaction center (Cα-atom). The potential energy function of a protein confor-

mation USOP , specified in terms of the coordinates {r}=r1, r2, . . . , rN , is given by

USOP = UFENE + UATT
NB + UREP

NB =

−

N−1
∑

i=1

k

2
R2

0 log

(

1 −

(

ri,i+1 − r0
i,i+1

)2

R2
0

)

+

N−3
∑

i=1

N
∑

j=i+3

εn

[

(

r0
ij

rij

)12

− 2

(

r0
ij

rij

)6
]

∆ij

+

N−2
∑

i=1

N
∑

j=i+2

εr

(

σij

rij

)6

+

N−3
∑

i=1

N
∑

j=i+3

εr

(

σ

rij

)6

(1 − ∆ij).

(B1)

In Eq. (B1), the finite extensible nonlinear elastic (FENE) potential UFENE with the spring

constant k=14N/m describes the backbone chain connectivity. The distance between residues

i and i+1 is ri,i+1, r0
i,i+1 is its value in the native (PDB) structure, and R0=2Å is the tolerance

in the change of a covalent bond distance. We used the Lennard-Jones potential UATT
NB to

account for the non-covalent interactions that stabilize the native state. We assumed that,

if the noncovalently linked residues i and j (|i − j|>2) are within the cutoff RC=8Å, then

20

∆ij=1, and zero otherwise. The value of ǫn (=1.5kcal/mol) quantifies the strength of the

non-bonded interactions. All the non-native interactions in the potential UREP
NB are treated as

repulsive. An additional constraint is imposed on the bond angle formed by residues i, i+1,

and i+2 by including the repulsive potential with parameters ǫr=1kcal/mol and σi,i+2=3.8Å,

which determine the strength and the range of the repulsion. To ensure the self-avoidance of

the protein chain, we set σ=3.8Å .

[1] Stone, J. E.; Phillips, J. C.; Freddolino, P. L.; Hardy, D. J.; Trabuco, L. G.; Schulten, K. J.

Comput. Chem. 2007, 28, 2618–2640.

[2] Friedrichs, M. S.; Eastman, P.; Vaidyanathan, V.; Houston, M.; Legrand, S.; Beberg, A. L.;

Ensign, D. L.; Bruins, C. M.; Pande, V. S. J. Comput. Chem. 2009, 30, 864–872.

[3] Anderson, J. A.; Lorentz, C. D.; Travesset, A. J. Comput. Phys. 2008, 227, 5342–5359.

[4] van Meel, J. A.; Arnold, A.; Frenkel, D.; Zwart, S. F. P.; Belleman, R. Mol. Simulat. 2008, 34,

259–266.

[5] Harvey, M. J.; Fabritilis, G. D. J. Chem. Theory Comput. 2009, 5, 2371–2377.

[6] Anderson, A. G.; III, W. A. G.; Schröder, P. Comput. Phys. Commun. 2007, 177, 298–306.

[7] Yang, J.; Wang, Y.; Chen, Y. J. Comput. Phys. 2007, 221, 799–804.

[8] Kirk, D. B.; Hwu, W.-M. W. Programming Massively Parallel Processors. A Hands-on Approach.;

Morgan Kaufmann, 2010.

[9] Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J.

Comput. Chem. 1983, 4, 187–217.

[10] Haberthür, U.; Caflisch, A. J. Comput. Chem. 2008, 29, 701–715.

[11] Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; International Series of Monographs

on Physics; Oxford Science Publications, 1988.

[12] L’Ecuyer, P.; Simard, R. ACM T. Math. Software. 2007, 33, 22.

[13] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes in C, 2nd

ed.; The Art of Scientific Computing; Cambridge University Press, 1992.

[14] Hyeon, C.; Dima, R. I.; Thirumalai, D. Structure 2006, 14, 1633–1645.

[15] M. Mickler, R. I. D.; Dietz, H.; Hyeon, C.; Thirumalai, D.; Rief, M. Proc. Natl. Acad. Sci. USA

2007, 104, 20268–20273.

[16] Dima, R. I.; Joshi, H. Proc. Natl. Acad. Sci. USA 2008, 105, 15743–15748.

[17] Gertsman, I.; Gan, L.; Guttman, M.; Lee, K.; Speir, J. A.; Duda, R. L.; Hendrix, R. W.;

21

Komives, E. A.; Johnson, J. E. Nature 2009, 458, 646–650.

[18] Steven, A. C.; B., H. J.; Cheng, N.; Trus, B. L.; Conway, J. F. Curr. Opin. Struct. Biol. 2005,

15, 227–236.

[19] Vlad, R. A. J. D. H.; Bahar, I. Structure 2005, 13, 413–421.

[20] GPU Gems 3 ; Nguyen, H., Ed.; Addison-Wesley, 2008.

[21] Tsang, W. W.; Marsaglia, G. J. Stat. Softw. 2000, 5, .

[22] Marsaglia, G.; Bray, T. A. SIAM Rev. 1964, 6, 260–264.

[23] Box, G. E. P.; Miller, M. E. Ann. Math. Stat. 1958, 29, 610–611.

[24] Marsaglia, G. DIEHARD: a battery of tests of Randomness., 1996, See:

http://stat.fsu.edu/ geo/diehard.html.

[25] Mascagni, M.; Srinivasan, A. ACM T. Math. Software. 2000, 26, 436–461.

[26] Soto, J. Statistical testing of random number generators, 1999, See: http://csrc.nist.gov/rng/.

[27] Selke, W.; Talapov, A. L.; Shchur, L. N. JETP Lett. 1993, 58, 665–668.

[28] Grassberger, P. Phys. Lett. A 1993, 181, 43–46.

[29] Ferrenberg, A. M.; Landau, D. P.; Wong, Y. J. Phys. Rev. Lett. 1992, 69, 3382–3384.

[30] Tausworthe, R. C. Math. Comput. 1965, 19, 201–209.

[31] L’Ecuyer, P. Math. Comput. 1996, 65, 203–213.

[32] Mascagni, M.; Srinivasan, A. Parallel Comput. 2004, 30, 899–916.

[33] Marsaglia, G. Random numbers for C: The END?, 1999, Published on sci.crypt.

[34] L’Ecuyer, P.; Blouin, F.; Couture, R. ACM T. Model. Comput. S. 1993, 3, 87–98.

[35] Veitshans, T.; Klimov, D.; Thirumalai, D. Fold. Des. 1997, 2, 1–22.

[36] Barsegov, V.; Klimov, D.; Thirumalai, D. Biophys. J. 2006, 90, 3827–3841.

[37] Ermak, D. L.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352–1360.

[38] Zhmurov, A.; Dima, R. I.; Kholodov, Y.; Barsegov, V. Proteins 2010, 78, 2984–2999.

[39] Risken, H. The Fokker-Planck Equation, 2nd ed.; Springer-Verlag, 1989.

[40] Mickler, M.; Dima, R. I.; Dietz, H.; Hyeon, C.; Thirumalai, D.; Rief, M. Proc. Natl. Acad. Sci.

USA 2007, 104, 20268–20273.

[41] Dima, R. I.; Joshi, H. Proc. Natl. Acad. Sci. USA 2008, 105, 15743–15748.

[42] Hyeon, C.; Onuchic, J. N. Proc. Natl. Acad. Sci. USA 2007, 104, 2175–2180.

[43] Lin, J. C.; Thirumalai, D. J. Am. Chem. Soc. 2008, 130, 14080–14084.

[44] Hyeon, C.; Lorimer, G. H.; Thirumalai, D. Proc. Natl. Acad. Sci. USA 2006, 103, 18939–18944.

[45] Hyeon, C.; Jennings, P. A.; Adams, J. A.; Onuchic, J. N. Proc. Natl. Acad. Sci. USA 2009, 106,

22

3023–3028.

[46] Tehver, R.; Thirumalai, D. Structure 2010, 18, 471–481.

[47] Zink, M.; Grubmueller, H. Biophys. J. 2009, 96, 1767–1777.

[48] Klimov, D. K.; Thirumalai, D. Proc. Natl. Acad. Sci. USA 2000, 97, 7254–7259.

[49] Ivanovska, I. L.; de Pablo, P. J.; Ibarra, B.; Sgalari, G.; MacKintosh, F. C.; et al., Proc. Natl.

Acad. Sci. USA 2004, 101, 7600–7605.

[50] Ivanovska, I.; Wuite, G.; Joensson, B.; Evilevitch, A. Proc. Natl. Acad. Sci. USA 2007, 104,

9603–9608.

[51] Weisel, J. W. Science 2008, 320, 456–457.

[52] Michel, J. P.; Ivanovska, I. L.; Gibbons, M. M.; Klug, W. S.; Knobler, C. M.; et al., Proc. Natl.

Acad. Sci. USA 2006, 103, 6184–6189.

[53] Landau, L. D.; Lifshitz, E. M. Theory of Elasticity, 3rd ed.; Pergamon, New York, 1986.

[54] Isralewitz, B.; Gao, M.; Schulten, K. Curr. Opin. Struct. Biol. 2001, 11, 224–230.

[55] Freddolino, P. L.; Liu, F.; Gruebele, M.; Schulten, K. Biophys. J. 2008, 94, L75–L77.

[56] Phelps, D. K.; Speelman, B.; Post, C. B. Curr. Opin. Struct. Biol. 2000, 10, 170–173.

[57] Bahar, I.; Rader, A. J. Curr. Opin. Struct. Biol. 2005, 15, 1–7.

[58] Wikoff, W. R.; Liljas, L.; Duda, R. L.; Tsiruta, H.; Hendrix, R. W.; Johnson, J. E. Science 2000,

289, 2129–2133.

[59] Lidmar, J.; Mirny, L.; Nelson, D. R. Phys. Rev. E 2003, 68, 051910–051919.

[60] Matsumoto, M.; Nishimura, T. ACM T. Model. Comput. S. 1998, 8, 3–30.

[61] Kuznetsov, Y. G.; Gurnon, J. R. abd Etten, J. L. V.; McPherson, A. J. Struct. Biol. 2005, 149,

256–263.

[62] Schwaiger, I.; Sattler, C.; Hostetter, D. R.; Rief, M. Nat. Mater. 2002, 1, 232–235.

23

FIGURE CAPTIONS

Fig. 1. Panel a: The computational time (in ms/step) for Langevin Dynamics (LD) of N Brow-

nian oscillators with the Hybrid Taus and additive Lagged Fibonacci generators of (pseudo)-

random numbers. We considered the three implementations, where (1) random numbers and LD

are generated on the CPU (Hybrid Taus (CPU)+Dynamics (CPU)), (2) random numbers are ob-

tained on the CPU, transfered to the GPU and used to propagate LD on the GPU (Hybrid Taus

(CPU)+Dynamics (GPU)), and (3) random numbers and LD are generated on the GPU (Hybrid

Taus (GPU)+Dynamics (GPU) and Lagged Fibonacci (GPU)+Dynamics (GPU)). Panel b: The

computational speedup (CPU time versus GPU time) for LD simulations fully implemented on

the GPU and on the single CPU core. We compared the two options when an RNG (Hybrid

Taus or Lagged Fibonacci) is organized in a separate kernel or is inside the main (integration)

kernel. We ran long trajectories (106 steps) to converge the speedup factor.

Fig. 2. The average particle position 〈X(t)〉 (panels a and b) and two-point correlation function

C(t) (panel c) for a system of N=104 Brownian oscillators. Theoretical curves of 〈X(t)〉 and

C(t) are compared with the simulation results obtained using the LCG, Hybrid Taus, Ran2, and

Lagged Fibonacci algorithms. Equilibrium fluctuations in 〈X(t)〉 in a longer timescale, obtained

using LCG, are magnified in panel b. A repeating pattern due to correlations among N streams

of random numbers is clearly observed.

Fig. 3. The computational performance of the developed realizations of the LCG, Ran2, Hy-

brid Taus, and Lagged Fibonacci algorithms in Langevin simulations of N three-dimensional

Brownian oscillators on the GPU. Panel a: The execution time (in ms/step); threads have

been synchronized on the CPU at the end of each step to imitate an LD simulation run of a

biomolecule. As a reference, we display the CPU time for Langevin simulations with Ran2 and

Hybrid Taus generators. Panel b: The memory demand, i.e. the amount of memory needed

for an RNG to store its current state. Step-wise increases in the memory usage for Lagged

Fibonacci are due to the change of constant parameters (Table I in SI).

Fig. 4. Computational time (in ms/step) for the GPU-based implementation of Langevin

simulations of N three-dimensional Brownian oscillators using Hybrid Taus RNG (panel a) and

Lagged Fibonacci RNG (panel b). The simulation time for Langevin Dynamics is compared with

the time for generating random numbers using Hybrid Taus RNG or Lagged Fibonacci RNG, and

with the time required to obtain deterministic (Newtonian) dynamics without random numbers

(computational speedup is displayed in Fig. 1b).

24

Fig. 5. The force-indentation profiles showing the dependence of force F on the cantilever

displacement Z (FZ curves) for the bacteriophage HK97, obtained using Langevin simulations

and Lagged Fibonacci RNG fully implemented on the GPU. To mimic the dynamic force mea-

surements in vitro, we indented the capsid using a spherical tip (gray balls) of radius R=5nm,

10nm, and 25nm. The cantilever with the spring constant κ=50N/m is moving downwards in

the direction shown by the gray arrows, approaching the viral shell with the constant velocity

vf=2.5µm/s (panel a), 25µm/s (panel b), and 2.5µm/s (panel c). Also shown are the transient

structures formed in the course of a single indentation trajectory. These show the geomet-

ric changes to the HK97 conformation due to the continuous indentation (panel b), buckling

(panel a) and fracture (panel c). The insets show the number of native contacts Q and the

spring constant of the virus capsid K as a function of Z.

25

TABLE I: The memory usage (in bytes/thread) and the number of GPU global memory calls, i.e.

the numbers of read/write operations per one random number (M1) and for 4 random numbers

(M2), for the LCG, Hybrid Taus, Ran2, and Lagged Fibonacci algorithms (4 random numbers are

needed per particle to generate 3 components of the Gaussian random force).

Parameter LCG Hybrid Taus Ran2 Lagged Fibonacci

bytes/thread 4 16 280 12

M1 1/1 4/4 4/4 3/1

M2 1/1 4/4 7/7 12/4

TABLE II: The average parameters characterizing the microscopic elastic behavior of the bacte-

riophage HK97, namely, the spring constant K and the Young’s modulus Y . Also presented are

the average values of the critical pressure pc, and the energy change due to the buckling transitions

∆Eb and the capsid fracture ∆Ef (values of R are given in parentheses).

vf , µm/s K, N/m Y , MPa pc, MPa ∆Eb/10
−17, Nm ∆Ef/10−17, Nm

2.5 0.01−0.025 64−160 6 (5nm) 1.4 (25nm) 2.7 (5nm)

25 0.05−0.075 320−480 9 (5nm) - 3.0 (5nm)

250 0.2−0.35 1280−2230 13 (5nm), 18 (10nm) - 3.4 (5nm), 5.7 (10nm)

26

10
-2

10
-1

10

10

10
2

C
om

pu
ta

tio
na

l t
im

e,
 m

s/
st

ep

Hybrid Taus (CPU) + Dynamics (CPU)
Hybrid Taus (CPU) + Dynamics (GPU)
Hybrid Taus (GPU) + Dynamics (GPU)
Lagged Fibonacci (GPU) + Dynamics (GPU)

10
1

10
2

10
3

10
4

10
5

10
6

System size, N

0

50

100

150

200

250

C
PU

 ti
m

e
/ G

PU
 ti

m
e

Hybrid Taus inside integration kernel
Hybrid Taus in separate kernel
Lagged Fibonacci inside integration kernel
Lagged Fibonacci in separate kernel

Figure 1

(a)

(b)

27

0 0.1 0.2 0.3 0.4
t, µs

1

10

10
2

10
3

<
R

(t
)>

, n
m

Theoretical curve
LCG
Hybrid Taus
Ran2
Lagged Fibonacci

0 2 4 6 8 10
t, µs

-4

0

4

8

<
R

(t
)>

, n
m

LCG
Hybrid Taus

0 0.1 0.2 0.3 0.4
t, µs

10
-3

10
-2

10
-1

1

C
(t

)

Theoretical curve
LCG
Hybrid Taus
Ran2
Lagged Fibonacci

Figure 2

(a)

(b)

(c)

28

10
2

10
3

10
4

10
5

10
6

System size, N

10
-1

1

10

10
2

10
3

C
om

pu
ta

tio
na

l t
im

e,
 m

s/
st

ep

Ran2 (CPU time)
Hybrid Taus (CPU time)
LCG
Hybrid Taus
Ran2
Lagged Fibonacci

2×10
5

4×10
5

6×10
5

8×10
5

1×10
6

System size, N

0

10

20

30

40

50

M
em

or
y

us
ag

e,
 M

B

LCG
Hybrid Taus
Ran2
Lagged Fibonacci

Figure 3

(a)

(b)

29

10
2

10
3

10
4

10
5

10
6

System size, N

10
-2

10
-1

1

C
om

pu
ta

tio
na

l t
im

e,
 m

s/
st

ep

Langevin Dynamics
Hybrid Taus
Dynamics w/o Hybrid Taus

10
2

10
3

10
4

10
5

10
6

System size, N

10
-2

10
-1

1

C
om

pu
ta

tio
na

l t
im

e,
 m

s/
st

ep

Langevin Dynamics
Lagged Fibonacci
Dynamics w/o Lagged Fibonacci

(a)

(b)

Figure 4

30

