
Energy terms in potential function 
 

 
This lecture describes the various energy terms in the potential function. Due to additivity 
principle the potential energy Ep is represented as the sum of local and non-local terms. 
Local terms include bond-length, bond-angle, dihedral and improper dihedral potentials. 
Non-local energy terms consist of pairwise electrostatic and van-der-Waals interactions.  
 
 
I. Bond-length potential 

 
 
This potential controls the length of covalent bonds. The most commonly used form for 
bond-length potential VBL is based on the Hook’s law (harmonic potential). In this case,  
 

( )2arkV aBL −=  ,         (1) 
 
where r is the distance between covalently bonded atoms , a is the corresponding 
equilibrium distance, and ka is the spring constant. The equilibrium distance between 
atoms can be obtained from X-ray diffraction experiments or using ab initio quantum 
calculations. The spring constant can be determined using the results of infrared 
adsorption and Raman spectroscopy. The frequency of bond length fluctuation in Eq. (1) 
is 

m
k a22 =ω  , where m is the mass of bonded particle. If the bonded masses are 

comparable (i.e., the motions of both atoms must be taken into account), then the 
effective mass μ=m1m2/(m1+m2) must be used in ω, where m1 and m2 are the masses of 
bonded atoms. Eq. (1) is used in CHARMM or OPLS force fields and the example of Eq. 
(1) parameterization is given in Fig. 1.  
 
 
 bond    ka, kcal/(mol·Å2)   a, Å        comment 
(atom  
 types) 
CT1  C      250.000    1.4900 ! backbone Cα-C bond 
CT1  CT1    222.500    1.5000 ! Cα-Cβ bond, e.g., in Val 
NH1  H      440.000    0.9970 ! backbone N-H bond 
CA   CA     305.000    1.3750 ! C-C bond in aromatic ring  
OT   HT     450.000    0.9572 ! O-H bond in water 
 

Fig. 1 The Hook’s law parameters for bond-length potential in CHARMM22. 
 
Bond-length harmonic potential is applicable for small bond length deformations (< 
10%). Although at larger deviations the covalent bond breaks, the harmonic term (Eq. 
(1)) does not capture this effect. It is possible to use a Morse potential to account for bond 
breakage. The Morse potential is given by 
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( )( )21 arSM
BL eDV −−−= , 

 
where D and S determine the value of bond-length potential at ∞→r  (dissociation 
energy) and the width of the potential well. Although Morse potential accounts for bond 
breakage, it remains finite at . Because at r close to a  the Morse potential can be 
approximated by the harmonic potential, the Morse parameters D and S can be found 
from the parameters in Eq. (1). The Morse potential is used to provide better 
representation of bond vibrational frequencies. As an intermediate solution to improve 
the agreement of bond length frequencies, one can add several terms from the Taylor 
expansion of the Morse potential to Eq. (1) (for example, cubic or quartic terms). It is 
important to note that any polynomial of the odd order used for V

0→r

BL may potentially lead 
to catastrophic instability as −∞→BLV  with ∞→r .  
 
In practice, bond lengths associated with light atoms (hydrogens) are often constrained to 
their equilibrium values using SHAKE or RATTLE algorithms (see coming lectures). In 
this case, the bond-length energy term is not considered in the energy function.  
 
 
II. Bond-angle potential 
 
 
Bond-angle potential is designed to reproduce the bond geometry in molecules, which is 
in turn controlled by hybridization of atomic (electronic) orbitals. For example, sp 
hybridization allows to the formation of two bonds with the angle between them of 180°. 
Other hybridizations, such as sp2 or sp3, result in trigonal or tetrahedral arrangements of 
covalent bonds around the atom (the respective bond angles are 120° or 109.5°). From 
these considerations the parameters for VBA can be derived. It must be noted that local 
environment may distort the bond angles. For example, for water molecule, in which 
oxygen has a sp3 hybridization, the bond angle is about 105°.   
 
The following forms of VBA are used 
 

( 2
0θθθ −= kVBA )

)

 (harmonic potential)      (2) 
 

and  
 

( 2
0coscos θθ −= tr

tr
BA kV  (trigonometric potential) 

 

It can be seen that at 0θθ →  ( ) 0
22

0 sin θθθ −= tr
tr

BA kV , i.e., both versions of bond-angle 
potential coincide.  CHARMM22 uses harmonic version of VBA (Fig. 2), although the 
trigonometric one is computationally more efficient, because it does not require 
computation of acos functions or their partial derivatives.  
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bond angle   kθ, kcal/(mol·deg2) θ0, deg      comments 
(atom types) 
 
NH1  CT1  C      50.000    107.0000 ! N-Cα-C angle in backbone 
HT   OT   HT     55.000    104.5200 ! H-O-H angle in water 
 

Fig. 2 Parameterization of bond-angle potential (Eq. (2)) in CHARMM22 force field. 
 

For water CHARMM22 offers the option to use instead Eq. (2) an Urey-Bradley (UB) 
potential to define the correct H-O-H bond angle.  This potential has the same functional 
form as harmonic bond length potential with the parameter a being equal to equilibrium 
distance between water hydrogens. The UB potential is computationally less expensive 
and better reproduces vibrational frequencies of water.  
 
III. Dihedral angle potential 
 
 
Because of high energy constants in bond-length and bond-angle potentials, the 
associated degrees of freedom are effectively frozen at room temperature. In contrast, 
most other potentials have the energy constants comparable with the energy of thermal 
motion kBT and, as a result, they determine the structural transitions in proteins.  The first 
of these “unfrozen” potentials is the dihedral potential, which plays a crucial role in local 
structure of proteins. The need for this potential arises because bond-length or bond-angle 
potentials as well as non-bonded potentials cannot easily describe the energetics of 
hydrocarbon molecules. For example, in four carbon butane C

B

4H10 dihedral angle 
potential is used to assign higher energy to cis conformation and describe properly the 
corresponding energy variation due to C-C bond rotation. The origin of dihedral potential 
is not completely understood, but repulsive interactions between overlapping bond 
orbitals and steric clashes between atoms (such as C1 and C4 in butane) appear to be 
contributing factors. The common functional form for dihedral angle potential VDA is 
 

( )[ ]0cos1
2

φφ −+= n
V

V n
DA , 

 
where Vn is the barrier height and n is the integer, which determines the periodicity of the 
potential (number of minima/maxima) in the interval [0,2π[. The protein part of  
CHARMM22 uses n=1,2,3 or 4. Most common values are n=1 or 2.  
 
Dihedral angle           Vn,     n    φ0      comments 
(atom types)          kcal/mol 
 
C    CT1  NH1  C        0.2000 1   180.00 ! backbone  phi 
NH1  C    CT1  NH1      0.6000   1     0.00 ! backbone  ksi 
CT1  C    NH1  CT1      1.6000   1     0.00 ! backbone omega 
CA   CA   CA   CA       3.1000   2   180.00 ! Phe side chain 
H    OH1  CT2  CT1      0.4200   3     0.00 ! Ser side chain 
 

Fig. 3 Parameterization of dihedral angle potential in CHARMM22 force field. 
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The first three dihedral angle potentials in Fig.3 (n=1) have a single minimum at φ=0 
(cis) or φ=180° (trans). The next dihedral angle potential (n=2) have two minima (at 0° 
and 180° or at 90° and 270°, if φ0=0°). The potential with n=3 has three minima at 60°, 
180°, 300°. In all cases, the minima are of the same depth. Combination of several 
dihedral potentials with n=2 and n=3 may be used to construct the potentials with uneven 
depths. These potentials are not used in proteins, but arise for nucleic acids. From Fig.3 it 
follows that the dihedral barriers are relatively low, except for ω backbone dihedral angle 
or that used for aromatic side chains. The parameters for VDA are typically obtained from 
ab initio quantum calculations with additional optimization based on available 
experimental data.    
 
 
IV. Improper dihedral angle potential 
  
 
Improper dihedral angles are used to select the correct geometry or chirality of atoms. 
Consider four atoms i,j,k,l, among which j is linked covalently to i,l,k. The improper 
angle is defined as the angle between the (jl) line and the plane (ijk) (Fig. 4). 
 
 
 

l 

k 

j i 

 
 
 
 
 
 
 

Fig. 4 Definition of improper angle for four atoms i,j,k,l. 
 
The usual functional form of improper angle potential Vimp is 
 

( )2
0ψψ −= impimp kV , 

 
where kimp determines the “stiffness” of the potential and ψ0 is the equilibrium value. The 
example of improper angle parameterization is shown in Fig. 5.  
 
Improper angle        k            ψo     comments imp

(atom types)      kcal/(mol·deg2) 
 
O    X    X    C     120.0000     0.0000 ! l-k-i-j improper angle 
 

Fig.5 Example of parameterization of improper angle potential in CHARMM22. 
 
Fig. 5 can illustrate the use of improper angle to set the position of carbonyl oxygen O 
with respect to the plane Cα-C-N (in this case, X gives the atom types CT1 and NH1). In 
principle, this can be achieved with the usual dihedral angle potentials, but because the 
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planarity of C,O,Cα,N atoms must be strictly enforced, it is computationally cheaper to 
use stiff harmonic improper potential (note the high value of kimp).  
 
 
V. Non-bonded potential  
 
 
Non-bonded potential includes van-der-Waals and electrostatic potentials. The van-der-
Waals potentials take into account repulsion between atoms at small separations and 
weak attraction at larger distances. The common form of this potential for a pair of atoms 
i and j is given by a Lennard-Jones function VLJ as  
 

612
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where BBij and Aij are the coefficients, which determine the depth and the location of 
energy minimum. The example of the parameters of van-der-Waals interactions is given 
in Fig. 5 for aliphatic carbons. The rules relating Bij B and Aij coefficients to the parameters 
ει and σi in Fig. 5 are as follows 
 

( )jiij

jiij

ijijij

ijijij

B

A

σσσ

εεε

σε

σε

+=

=

=

=

2
1

2
12

6

 

 
 
atom                         εi                  σi/2       
type         kcal/mol     Å 
 
CT1    0.000000  -0.020000     2.275000   0.000000  -0.010000     1.900000 
CT2    0.000000  -0.055000     2.175000   0.000000  -0.010000     1.900000  
CT3    0.000000  -0.080000     2.060000   0.000000  -0.010000     1.900000  
 

Fig. 5 The parameters of van-der-Waals interactions for three aliphatic carbons. 
 
The repulsion at small separations between atoms is associated with the Pauli exclusion 
principle, while weak attraction at larger distances is due to London dispersion 
interactions. The parameters εi and σi are usually obtained from X-ray diffraction 
experiments and from simulations of simple organic molecules, respectively. The 
important feature of VLJ is its fast decay as ∞→r  (due to r6 term). For this reason van-
der-Waals interactions are considered short-ranged and although the sum of van-der-
Waals energies scales as N2, there are efficient schemes that reduce computational burden 
due to short-range character of this potential.   
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Electrostatic or Coulomb potential describes the interactions between pairs of partial 
charges. Its functional form is 
 

( ) ijij

ji
EL rr

qq
V

ε
= , 

 
where qi and qj are the partial charges on the atoms i and j and ε(rij) is a distance 
dependent dielectric function. If solvent is treated explicitly in the simulations, the 
dielectric properties of the medium is taken into account automatically by explicitly 
computing all electrostatic interactions, therefore, ε(rij)=1. The need for r-dependent ε 
arises for implicit solvent models. The effective screening of electrostatic interactions due 
to water (the dielectric constant of water is 80) requires that VEL decays faster than 1/r. In 
the simplest case one can assume that ε(r)=r or consider the potential ε(r)=Dexp(kr), 
where k is the screening distance.   
 
Because VEL decays as r-1, the electrostatic interactions are considered as long-ranged. For 
this reason it is difficult to devise methods reducing their N2 scaling. One such method, 
Ewald sums, will be discussed in the future lectures. To quickly calculate VEL in vacuum 
the following formula may be used 
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where  and iq~ jq~ are expressed in the units of electron charge, rij is in Å, and ε0 is the 
dielectric permittivity of vacuum. This formula indicates that the electrostatic interaction 
of two charges of 1e separated by the distance of 7 Å is about 50 kcal/mol.  
 
 
VI. Different force fields 
 
 
In these lectures we mainly considered CHARMM22 force field. However, many force fields are 
currently available. The most widely used force fields are 
 

1. AMBER (Assisted Model Building with Energy Refinement, amber.scripps.edu) 
2. OPLS, OPLS-AA (Optimized Potentials for Liquid Simulations, 

.zarbi.chem.yale.edu) 
3. CHARMM (Chemistry at HARvard Macromolecular Mechanics, 

www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm)  
4. GROMOS (GROningen Molecular Simulation, www.igc.ethz.ch/gromos) 

 
It is important to keep in mind that these force fields are developed as whole and it is not 
possible to substitute or mix parts of different force fields.  
 
The difficult question is related to the comparison of the performance of various force 
fields. In recent paper Brooks and coworkers compared the results of molecular dynamics 
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simulations of three large proteins using three force fields, CHARMM, OPLS-AA, and 
AMBER (Journal of Computational Chemistry 23, 1045 (2002)). The simulations of 2 ns 
produced similar results. For example, the differences in the average accessible surface 
area, root-mean-squared deviation from the native state, secondary structure obtained 
from using different force fields were comparable with the normal variations between 
individual trajectories using a given force field.  
 
Hummer and coworkers compared the conformational properties of polypeptides using 
CHARMM and AMBER force fields in the long (~10 ns) explicit water simulations 
(JACS 124, 6563 (2002)). They found that, although the loop closure frequencies were 
similar, the distribution of structures differs. For example, the distribution of end-to-end 
distances was skewed towards larger distances in CHARMM. These studies suggest that 
open unfolded conformations of polypeptides show the evidence of force field 
dependence, but compact native-like structures have the properties largely independent 
on the particular force field. The likely explanation is that relatively shallow barriers 
separating structural states in the unfolded   state depend on the details of specific 
parameterization, while self-averaging in the folded structures effectively cancels out the 
force field discrepancies.  
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