
Lecture 4: Resampling Methods 

Resampling methods are an indispensable tool in modern statistics. They involve repeatedly 

drawing samples from a training set and refitting a model of interest on each sample in order to obtain 

additional information about the fitted model. For example, to estimate the variability of a linear 

regression fit, we can repeatedly draw different samples from the training data, fit a linear 

regression to each new sample, and then examine the extent to which the resulting fits differ. Such 

an approach may allow us to obtain information that would not be available from fitting the model 

only once using the original training sample. 

Resampling approaches can be computationally expensive, because they involve fitting the same 

statistical method multiple times using different subsets of the training data. However, due to recent 

advances in computing power, the computational requirements of resampling methods generally 

are not prohibitive. In this chapter, we discuss two of the most commonly used resampling methods, 

cross-validation and the bootstrap. Both methods are important tools in the practical application of 

many statistical learning procedures. For example, cross-validation can be used to estimate the test 

error associated with a given statistical learning method in order to evaluate its performance, or to 

select the appropriate level of flexibility. The process of evaluating a model’s performance is known 

as model assessment, whereas the process of selecting the proper level of flexibility for a model is 

known as model selection. The bootstrap is used in several contexts, most commonly to provide a 

measure of accuracy of a parameter estimate or of a given statistical learning method. 

Cross-Validation 

In linear models, we discuss the distinction between the test error rate and the training error rate. 

The test error is the average error that results from using a statistical learning method to predict 

the response on a new observation — that is, a measurement that was not used in training the 

method. Given a data set, the use of a particular statistical learning method is warranted if it results 

in a low test error. The test error can be easily calculated if a designated test set is available. 

Unfortunately, this is usually not the case. In contrast, the training error can be easily calculated 

by applying the statistical learning method to the observations used in its training. But as we saw 

before, the training error rate often is quite different from the test error rate, and in particular the 

former can dramatically underestimate the latter. 

In the absence of a very large, designated test set that can be used to directly estimate the test error 

rate, a number of techniques can be used to estimate this quantity using the available training data. 

Some methods make mathematical adjustment to the training error rate in order to estimate the test 

error rate. In this section, we instead consider a class of methods that estimate the test error rate by 

holding out a subset of the training observations from the fitting process, and then applying the 

statistical learning method to those held out observations. First, for simplicity we assume that we 

are interested in performing regression with a quantitative response. Next, we consider the case of 

classification with a qualitative response. As we will see, the key concepts remain the same 

regardless of whether the response is quantitative or qualitative. 



The Validation Set Approach 

Suppose that we would like to estimate the test error associated with fitting a particular statistical 

learning method on a set of observations. The validation set approach, displayed in Figure 1, is a 

very simple strategy for this task. It involves randomly dividing the available set of observations 

into two parts, a training set and a validation set or hold-out set. The model is fit on the training 

set, and the fitted model is used to predict the responses for the observations in the validation set. 

The resulting validation set error rate—typically assessed using MSE in the case of a quantitative 

response—provides an estimate of the test error rate. 

 

FIGURE 1. A schematic display of the validation set approach. A set of 𝑛  observations are 
randomly split into a training set (shown in blue, containing observations 7, 22, and 13, among 

others) and a validation set (shown in beige, and containing observation 91, among others). The 

statistical learning method is fit on the training set, and its performance is evaluated on the 

validation set. 

Using MSE as a measure of validation set error, are shown in the left-hand panel of Figure 2. The 

validation set MSE for the quadratic fit is considerably smaller than for the linear fit. However, the 

validation set MSE for the cubic fit is actually slightly larger than for the quadratic fit. This implies 

that including a cubic term in the regression does not lead to better prediction than simply using a 

quadratic term. 

 

FIGURE 2. The validation set approach was used on the Auto data set in order to estimate the test 

error that results from predicting mpg using polynomial functions of horsepower. Left: Validation 

error estimates for a single split into training and validation data sets. Right: The validation method 

was repeated ten times, each time using a different random split of the observations into a training 



set and a validation set. This illustrates the variability in the estimated test MSE that results from 

this approach. 

Recall that in order to create the left-hand panel of Figure 2, we randomly divided the data set into 

two parts, a training set and a validation set. If we repeat the process of randomly splitting the 

sample set into two parts, we will get a somewhat different estimate for the test MSE. As an 

illustration, the right-hand panel of Figure 2 displays ten different vali- dation set MSE curves from 

the Auto data set, produced using ten different random splits of the observations into training and 

validation sets. All ten curves indicate that the model with a quadratic term has a dramatically 

smaller validation set MSE than the model with only a linear term. Furthermore, all ten curves 

indicate that there is not much benefit in including cubic or higher-order polynomial terms in the 

model. But it is worth noting that each of the ten curves results in a different test MSE estimate for 

each of the ten regression models considered. And there is no consensus among the curves as to 

which model results in the smallest validation set MSE. Based on the variability among these 

curves, all that we can conclude with any confidence is that the linear fit is not adequate for this 

data. 

1. As is shown in the right-hand panel of Figure 2, the validation estimate of the test error rate 

can be highly variable, depending on precisely which observations are included in the 

training set and which observations are included in the validation set. 

 

2. In the validation approach, only a subset of the observations—those that are included in 

the training set rather than in the validation set—are used to fit the model. Since statistical 

methods tend to perform worse when trained on fewer observations, this suggests that the 

validation set error rate may tend to overestimate the test error rate for the model fit on the 

entire data set. 

In the coming subsections, we will present cross-validation, a refinement of the validation set 

approach that addresses these two issues. 

Leave-One-Out Cross-Validation 

Leave-one-out cross-validation (LOOCV) is closely related to the validation set approach, but it 

attempts to address that method’s drawbacks. 

Like the validation set approach, LOOCV involves splitting the set of observations into two parts. 

However, instead of creating two subsets of comparable size, a single observation (𝑥1, 𝑦1) is used 
for the validation set, and the remaining observations {(𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} make up the training 

set. The statistical learning method is fit on the 𝑛 − 1 training observations, and a prediction 𝑦1̂ is 

made for the excluded observation, using its value x1. Since (x1, y1) was not used in the fitting 

process, 𝑀𝑆𝐸1 = (𝑦1 − 𝑦1̂)2 provides an approximately unbiased estimate for the test error. But 

even though MSE1 is unbiased for the test error, it is a poor estimate because it is highly variable, 

since it is based upon a single observation  (𝑥1, 𝑦1). 

We can repeat the procedure by selecting (𝑥2, 𝑦2) for the validation data, training the statistical 
learning procedure on the 𝑛 − 1  observations {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} , and computing 



𝑀𝑆𝐸2 = (𝑦2 − 𝑦2̂)2. Repeating this approach 𝑛 times produces 𝑛 squared errors, 𝑀𝑆𝐸1, … , 𝑀𝑆𝐸𝑛. 

The LOOCV estimate for the test MSE is the average of these n test error estimates: 

                                                                      𝐶𝑉(𝑛) =
1

𝑛
∑ 𝑀𝑆𝐸𝑖

𝑖=1

                                                               (1) 

A schematic of the LOOCV approach is illustrated in Figure 3.  

 

FIGURE 3. A schematic display of LOOCV. A set of 𝑛 data points is repeatedly split into a training 
set (shown in blue) containing all but one observation, and a validation set that contains only that 

observation (shown in beige). The test error is then estimated by averaging the 𝑛 resulting MSE’s. 

The first training set contains all but observation 1, the second training set contains all but 

observation 2, and so forth. 

LOOCV has a couple of major advantages over the validation set approach. First, it has far less 

bias. In LOOCV, we repeatedly fit the statistical learning method using training sets that contain 

𝑛 − 1 observations, almost as many as are in the entire data set. This is in contrast to the validation 

set approach, in which the training set is typically around half the size of the original data set. 

Consequently, the LOOCV approach tends not to overestimate the test error rate as much as the 

validation set approach does. Second, in contrast to the validation approach which will yield 

different results when applied repeatedly due to randomness in the training/validation set splits, 

performing LOOCV multiple times will always yield the same results: there is no randomness in 

the training/validation set splits. 

We used LOOCV on the Auto data set in order to obtain an estimate of the test set MSE that results 

from fitting a linear regression model to predict mpg using polynomial functions of horsepower. 

The results are shown in the left-hand panel of Figure 4. 



 

FIGURE 4. Cross-validation was used on the Auto data set in order to estimate the test error that 

results from predicting mpg using polynomial functions of horsepower. Left: The LOOCV error 

curve. Right: 10-fold CV was run nine separate times, each with a different random split of the 

data into ten parts. The figure shows the nine slightly different CV error curves. 

LOOCV has the potential to be expensive to implement, since the model has to be fit 𝑛 times. This 

can be very time consuming if 𝑛 is large, and if each individual model is slow to fit. With least 

squares linear or polynomial regression, an amazing shortcut makes the cost of LOOCV the same 

as that of a single model fit! The following formula holds: 

                                                                   𝐶𝑉(𝑛) =
1

𝑛
∑(

𝑦𝑖 − 𝑦̂𝑖

1 − ℎ𝑖
)2

𝑛

𝑖=1

                                                          (2) 

where 𝑦̂𝑖 is the ith fitted value from the original least squares fit, and ℎ𝑖 is the leverage. This is like 

the ordinary MSE, except the ith residual is divided by 1 − ℎ𝑖. The leverage lies between 1/n and 

1, and reflects the amount that an observation influences its own fit. Hence the residuals for high-

leverage points are inflated in this formula by exactly the right amount for this equality to hold. 

LOOCV is a very general method, and can be used with any kind of predictive modeling. 

k-Fold Cross-Validation 

An alternative to LOOCV is k-fold CV. This approach involves randomly dividing the set of 

observations into 𝑘 groups, or folds, of approximately equal size. The first fold is treated as a 

validation set, and the method is fit on the remaining 𝑘 − 1  folds. The mean squared error, 

MSE1, is then computed on the observations in the held-out fold. This procedure is repeated k 

times; each time, a different group of observations is treated as a validation set. This process 

results in k estimates of the test error, 𝑀𝑆𝐸1, 𝑀𝑆𝐸2, … , 𝑀𝑆𝐸𝑘. The k-fold CV estimate is 

computed by averaging these values, 



                                                                           𝐶𝑉(𝑛) =
1

𝑘
∑ 𝑀𝑆𝐸𝑖

𝑘

𝑖=1

                                                          (3) 

Figure 5 illustrates the k-fold CV approach. 

 

FIGURE 5. A schematic display of 5-fold CV. A set of 𝑛 observations is randomly split into five 

non-overlapping groups. Each of these fifths acts as a validation set (shown in beige), and the 

remainder as a training set (shown in blue). The test error is estimated by averaging the five 

resulting MSE estimates. 

It is not hard to see that LOOCV is a special case of k-fold CV in which k is set to equal n. In 

practice, one typically performs k-fold CV using 𝑘 = 5 or 𝑘 = 10. What is the advantage of using 

𝑘 = 5  or 𝑘 = 10  rather than 𝑘 = 𝑛   The most obvious advantage is computational. LOOCV 

requires fitting the statistical learning method n times. This has the potential to be computationally 

expensive (except for linear models fit by least squares, in which case formula (2) can be used). 

But cross-validation is a very general approach that can be applied to almost any statistical learning 

method. Some statistical learning methods have computationally intensive fitting procedures, and 

so performing LOOCV may pose computational problems, especially if 𝑛 is extremely large. In 

contrast, performing 10-fold CV requires fitting the learning procedure only ten times, which may 

be much more feasible. As we see later sections, there also can be other non-computational 

advantages to performing 5-fold or 10-fold CV, which involve the bias-variance trade-off. 

The right-hand panel of Figure 4 displays nine different 10-fold CV estimates for the Auto data set, 

each resulting from a different random split of the observations into ten folds. As we can see from 

the figure, there is some variability in the CV estimates as a result of the variability in how the 

observations are divided into ten folds. But this variability is typically much lower than the 

variability in the test error estimates that results from the validation set approach (right-hand panel 

of Figure 2). 

When we perform cross-validation, our goal might be to determine how well a given statistical 

learning procedure can be expected to perform on independent data; in this case, the actual estimate 



of the test MSE is of interest. But at other times we are interested only in the location of the 

minimum point in the estimated test MSE curve. This is because we might be performing cross-

validation on a number of statistical learning methods, or on a single method using different levels 

of flexibility, in order to identify the method that results in the lowest test error. For this purpose, 

the location of the minimum point in the estimated test MSE curve is important, but the actual 

value of the estimated test MSE is not. 

  

FIGURE 6. True and estimated test MSE for the simulated data sets in Lecture 1 Figures 9 (left), 

10 (center), and 11 (right). The true test MSE is shown in blue, the LOOCV estimate is shown as 

a black dashed line, and the 10-fold CV estimate is shown in orange. The crosses indicate the 

minimum of each of the MSE curves. 

Bias-Variance Trade-Off for k-Fold Cross-Validation 

We mentioned that k-fold CV with 𝑘 < 𝑛 has a computational advantage to LOOCV. But putting 

computational issues aside, a less obvious but potentially more important advantage of k-fold CV 

is that it often gives more accurate estimates of the test error rate than does LOOCV. This has to 

do with a bias-variance trade-off. 

It was mentioned that the validation set approach can lead to overestimates of the test error rate, 

since in this approach the training set used to fit the statistical learning method contains only half 

the observations of the entire data set. Using this logic, it is not hard to see that LOOCV will give 

approximately unbiased estimates of the test error, since each training set contains 𝑛 − 1 
observations, which is almost as many as the number of observations in the full data set. And 

performing k-fold CV for, say, 𝑘 = 5 𝑜𝑟 𝑘 = 10 will lead to an intermediate level of bias, since 

each training set contains (𝑘 − 1)𝑛/𝑘  observations—fewer than in the LOOCV approach, but 

substantially more than in the validation set approach. Therefore, from the perspective of bias 

reduction, it is clear that LOOCV is to be preferred to k-fold CV. 

However, we know that bias is not the only source for concern in an estimating procedure; we 

must also consider the procedure’s variance. It turns out that LOOCV has higher variance than 

does k-fold CV with 𝑘 < 𝑛. Why is this the case  When we perform LOOCV, we are in effect 



averaging the outputs of n fitted models, each of which is trained on an almost identical set of 

observations; therefore, these outputs are highly (positively) correlated with each other. In contrast, 

when we perform k-fold CV with 𝑘 < 𝑛, we are averaging the outputs of 𝑘 fitted models that are 

somewhat less correlated with each other, since the overlap between the training sets in each model 

is smaller. Since the mean of many highly correlated quantities has higher variance than does the 

mean of many quantities that are not as highly correlated, the test error estimate resulting from 

LOOCV tends to have higher variance than does the test error estimate resulting from k-fold CV. 

To summarize, there is a bias-variance trade-off associated with the choice of k in k-fold cross-

validation. Typically, given these considerations, one performs k-fold cross-validation using 𝑘 =
5 𝑜𝑟 𝑘 = 10, as these values have been shown empirically to yield test error rate estimates that 

suffer neither from excessively high bias nor from very high variance. 

Cross-Validation on Classification Problems 

In this chapter so far, we have illustrated the use of cross-validation in the regression setting where 

the outcome 𝑌 is quantitative, and so have used MSE to quantify test error. But cross-validation 

can also be a very useful approach in the classification setting when 𝑌 is qualitative. In this setting, 

cross-validation works just as described earlier in this chapter, except that rather than using MSE 

to quantify test error, we instead use the number of misclassified observations. For instance, in the 

classification setting, the LOOCV error rate takes the form 

                                                                             𝐶𝑉(𝑛) =
1

𝑛
∑ 𝐸𝑟𝑟𝑖

𝑛

𝑖=1

                                                          (4) 

where 𝐸𝑟𝑟𝑖 = 𝐼(𝑦𝑖 ≠ 𝑦̂𝑖) . The k-fold CV error rate and validation set error rates are defined 

analogously. 

As an example, we fit various logistic regression models on the two-dimensional classification data 

displayed in Lecture 1 Figure 13. In the top-left panel of Figure 7, the black solid line shows the 

estimated decision boundary resulting from fitting a standard logistic regression model to this data 

set. Since this is simulated data, we can compute the true test error rate, which takes a value of 

0.201 and so is substantially larger than the Bayes error rate of 0.133. Clearly logistic regression 

does not have enough flexibility to model the Bayes decision boundary in this setting. We can 

easily extend logistic regression to obtain a non-linear decision boundary by using polynomial 

functions of the predictors, as we did in the regression setting. 



 

FIGURE 7. Logistic regression fits on the two-dimensional classification data displayed in Figure 

2.13. The Bayes decision boundary is represented using a purple dashed line. Estimated decision 

boundaries from linear, quadratic, cubic and quartic (degrees 1–4) logistic regressions are 

displayed in black. The test error rates for the four logistic regression fits are respectively 0.201, 

0.197, 0.160, and 0.162, while the Bayes error rate is 0.133. 

The Bootstrap 

The bootstrap is a widely applicable and extremely powerful statistical tool that can be used to 

quantify the uncertainty associated with a given estimator or statistical learning method. As a 

simple example, the bootstrap can be used to estimate the standard errors of the coefficients from 

a linear regression fit. In the specific case of linear regression, this is not particularly useful, since 

we saw that standard statistical software such as R outputs such standard errors automatically. 

However, the power of the bootstrap lies in the fact that it can be easily applied to a wide range of 

statistical learning methods, including some for which a measure of variability is otherwise 

difficult to obtain and is not automatically output by statistical software. 

Here, we illustrate the bootstrap on a toy example in which we wish to determine the best 

investment allocation under a simple model. We will also explore the use of the bootstrap to assess 

the variability associated with the regression coefficients in a linear model fit. 



Suppose that we wish to invest a fixed sum of money in two financial assets that yield returns of 

𝑋 and 𝑌, respectively, where 𝑋 and 𝑌 are random quantities. We will invest a fraction 𝛼 of our 

money in 𝑋, and will invest the remaining 1 − 𝛼 in 𝑌. Since there is variability associated with the 

returns on these two assets, we wish to choose α to minimize the total risk, or variance, of our 

investment. In other words, we want to minimize 𝑉𝑎𝑟(𝛼𝑋 + (1 − 𝛼)𝑌). One can show that the 

value that minimizes the risk is given by 

                                                                 𝛼 =
𝜎2

𝑌 − 𝜎𝑋𝑌

𝜎2
𝑋 + 𝜎2

𝑌 − 2𝜎𝑋𝑌
                                                             (5) 

Where 𝜎2
𝑋 = 𝑉𝑎𝑟(𝑋), 𝜎2

𝑌 = 𝑉𝑎𝑟(𝑌), and 𝜎𝑋𝑌 = 𝐶𝑜𝑣(𝑋, 𝑌). In reality, the quantities 𝜎2
𝑋, 𝜎2

𝑌, 

and 𝜎𝑋𝑌 are unknown. We can compute estimates for these quantities, 𝜎̂2
𝑋, 𝜎̂2

𝑌, and 𝜎̂𝑋𝑌, using a 

data set that contains past measurements for 𝑋 and 𝑌. We can then estimate the value of 𝛼 that 

minimizes the variance of our investment using 

                                                                 𝛼 =
𝜎̂2

𝑌 − 𝜎̂𝑋𝑌

𝜎̂2
𝑋 + 𝜎̂2

𝑌 − 2𝜎̂𝑋𝑌
                                                             (6) 

Figure 8 illustrates this approach for estimating α on a simulated data set. In each panel, we 

simulated 100 pairs of returns for the investments 𝑋  and 𝑌 . We used these returns to estimate 

𝜎2
𝑋, 𝜎2

𝑌, and 𝜎𝑋𝑌, which we then substituted into Eq. (6) in order to obtain estimates for 𝛼. The 

value of 𝛼̂ resulting from each simulated data set ranges from 0.532 to 0.657. 

 

FIGURE 8. Each panel displays 100 simulated returns for investments X and Y. From left to right 

and top to bottom, the resulting estimates for 𝛼 are 0.576, 0.532, 0.657, and 0.651. 

It is natural to wish to quantify the accuracy of our estimate of 𝛼. To estimate the standard deviation 

of 𝛼̂, we repeated the process of simulating 100 paired observations of 𝑋 and 𝑌, and estimating α 



using (5.7), 1,000 times. We thereby obtained 1,000 estimates for 𝛼 , which we can call 

𝛼̂1, 𝛼̂2 … 𝛼̂1000. The left-hand panel of Figure 9 displays a histogram of the resulting estimates. 

 

FIGURE 9. Left: A histogram of the estimates of α obtained by generating 1,000 simulated data sets from 

the true population. Center: A histogram of the estimates of α obtained from 1,000 bootstrap samples from 

a single data set. Right: The estimates of α displayed in the left and center panels are shown as boxplots. 

In each panel, the pink line indicates the true value of 𝛼. 

The mean over all 1,000 estimates for 𝛼 is 

𝛼̅ =
1

1000
∑ 𝛼̂𝑟

1000

𝑟=1

= 0.5996, 

 very close to 𝛼 = 0.6, and the standard deviation of the estimates is 

√
1

1000 − 1
∑ (𝛼𝑟̂ − 𝛼̅)2

1000

𝑟=1

= 0.083 

This gives us a very good idea of the accuracy of 𝛼̂: 𝑆𝐸(𝛼̂) ≈ 0.083. So roughly speaking, for a 
random sample from the population, we would expect 𝛼̂ to differ from α by approximately 0.08, 

on average. 

In practice, however, the procedure for estimating SE(𝛼̂) outlined above cannot be applied, because 

for real data we cannot generate new samples from the original population. However, the bootstrap 

approach allows us to use a computer to emulate the process of obtaining new sample sets, so that 

we can estimate the variability of 𝛼̂ without generating additional samples. Rather than repeatedly 

obtaining independent data sets from the population, we instead obtain distinct data sets by 

repeatedly sampling observations from the original data set. 



This approach is illustrated in Figure 10 on a simple data set, which we call 𝑍, that contains only 

𝑛 = 3 observations. We randomly select 𝑛 observations from the data set in order to produce a 

bootstrap data set, 𝑍∗1. The sampling is performed with replacement, which means that the same 

observation can occur more than once in the bootstrap data set. In this example, 𝑍∗1 contains the 

third observation twice, the first observation once, and no instances of the second observation. 

Note that if an observation is contained in  𝑍∗1, then both its 𝑋 and 𝑌 values are included. We can 

use  𝑍∗1 to produce a new bootstrap estimate for α, which we call 𝛼̂∗1. This procedure is repeated 

B times for some large value of 𝐵 , in order to produce 𝐵  different bootstrap data sets, 

𝑍∗1, 𝑍∗2 … 𝑍∗𝐵, and 𝐵 corresponding α estimates, 𝛼̂∗1, 𝛼̂∗2 … 𝛼̂∗𝐵. We can compute the standard 

error of these bootstrap estimates using the formula 

𝑆𝐸𝐵(𝛼̂) = √
1

𝐵 − 1
∑(𝛼̂∗𝑟 −

1

𝐵
∑ 𝛼̂∗𝑟′

𝐵

𝑟′=1

)2

𝐵

𝑟=1

 

This serves as an estimate of the standard error of 𝛼̂ estimated from the original data set. 

 

FIGURE 10. A graphical illustration of the bootstrap approach on a small sample containing 𝑛 =
3 =observations. Each bootstrap data set contains 𝑛 observations, sampled with replacement from 

the original data set. Each bootstrap data set is used to obtain an estimate of 𝛼. 

The bootstrap approach is illustrated in the center panel of Figure 10, which displays a histogram 

of 1,000 bootstrap estimates of α, each computed using a distinct bootstrap data set. This panel 

was constructed on the basis of a single data set, and hence could be created using real data.  



Note that the histogram looks very similar to the left-hand panel which displays the idealized 

histogram of the estimates of α obtained by generating 1,000 simulated data sets from the true 

population. In particular the bootstrap estimate (𝑆𝐸(𝛼̂)  from (5.8) is 0.087, very close to the 

estimate of 0.083 obtained using 1,000 simulated data sets. 

Case Study: Microtubule Dynamic Instability Modeling 

Microtubules (MTs), cylindrical polymers of 𝛼𝛽-tubulin dimers, are fundamental to cell 

structure and function. They exhibit dynamic instability, spontaneously switching between four 

distinct kinetic states: growth, shortening (shrinkage), rescue (switching from shortening to 

growth), and catastrophe (switching from growth to shortening). While experiments can track 

MT length changes over time, they struggle to simultaneously and with sufficient temporal 

resolution reveal the underlying structural and energetic molecular features that govern these 

transitions. This limited view makes it difficult to answer central questions, such as what 

specifically triggers catastrophe or rescue, and if the determinants of these states change under 

different cellular conditions. 

 

FIGURE 11. the 4 kinetic states of microtubule: growth, rescue, shrinkage (shortening), and catastrophe 

[1]. 

The Modeling Approach 

To overcome these experimental limitations, Kliuchnikov et al. [2] developed the Microtubule 

Assembly and Disassembly DYnamics (MADDY) computational model. This model was 

rigorously parameterized and validated against experimental measurements of MT growth rates, 

shortening rates, and force generation, ensuring the simulations captured realistic MT behavior. 

The authors created six case studies to simulate: 

• Case Studies 1–3 simulate physiological conditions (normal tubulin concentration, 25 

µM) but with increasing GTP hydrolysis rates — testing how chemical energy turnover 

affects stability. 

• Case Studies 4–6 simulate high-tubulin conditions (250 µM) where microtubule growth 

is faster, but also more dynamic, again across increasing hydrolysis rates. 



Utilizing GPU acceleration, the researchers generated rich time-series data, tracking both MT 

length and molecular structure as the system spontaneously transitioned between the four kinetic 

states. 

The output from these simulations was used to construct a supervised learning problem. 

Trajectories were manually labeled into one of the four kinetic states based on the change in 

length over time. Simultaneously, fourteen quantitative features were extracted at each time 

point, encompassing both structural and energetic properties. 

• Structural features: MT length (𝐿), Number of hydrolyzed GDP-bound dimers (𝑛ℎ𝑦𝑑), 

MT tip length (𝑙) and width (𝑤), Average longitudinal curvature (𝜅𝑙𝑜𝑛𝑔), Average lateral 

curvature (𝜅𝑙𝑎𝑡), Number of longitudinal and lateral interactions (𝑛𝑙𝑜𝑛𝑔, 𝜅𝑙𝑎𝑡) 

• Energetic features: Total lateral and longitudinal interaction energies in the lattice 

(𝑈𝑙𝑎𝑡 , 𝑈𝑙𝑜𝑛𝑔), Interaction energies at the MT tip (𝑢𝑙𝑎𝑡 , 𝑢𝑙𝑜𝑛𝑔), Energies required to 

complete the MT to a full cylinder ( 𝑈𝑙𝑎𝑡
𝑎𝑑𝑑 , 𝑈𝑙𝑜𝑛𝑔

𝑎𝑑𝑑 ) 

The challenge was to correctly classify the kinetic state (label) based solely on the 14 feature 

measurements at that instant. 

 

FIGURE 12. Fourteen quantitative features used for machine learning classification: 

(1) MT length (L), (2) number of hydrolyzed αβ-tubulin dimers in the lattice, (3) total lateral 

interaction energy, (4) total longitudinal interaction energy, (5) lateral interaction energy at the 

tip, (6) longitudinal interaction energy at the tip, (7) average longitudinal curvature, (8) average 

lateral curvature, (9) MT tip length, (10) MT tip width, (11) average number of longitudinal 

interactions per protofilament, (12) average number of lateral interactions per helical pitch, (13) 

lateral energy required to complete the cylinder, and (14) longitudinal energy required to 



complete the cylinder. These features were selected based on current hypotheses about molecular 

control of MT growth and shortening. 

Robust Assessment and Classifier Performance 

This approach is crucial because: 1) it addresses the validation set variability. A single train-test 

split can give misleading results depending on which observations happen to be in the test set. 2) 

It maximizes data usage. Unlike a single validation set approach, all data are used for both 

training and testing. 3) It provides uncertainty estimates. The variance across the 15 trials 

indicates how stable the model performance is. 

Multiple classification algorithms were evaluated: 

• Single classifiers: Linear Discriminant Analysis (LDA), Support Vector Machines 

(SVM), Logistic Regression (LR), K-Nearest Neighbors (KNN) 

• Ensemble methods: Bagging Classifier (BAG), Random Forest (RF), Extra Trees (ET), 

XGBoost (XGB) 

The researchers also compared their results to Leave-One-Out Cross-Validation (LOOCV) for 

selected cases. While LOOCV gave similar accuracy estimates, it was computationally 

prohibitive given the dataset size and number of models being compared. The 5-fold CV 

provided nearly the same information at much lower computational cost. 

To evaluate classification performance, the authors trained several algorithms to distinguish 

between the four kinetic states of MT dynamics—assembly, catastrophe, shortening, and 

rescue—based on the 14 structural and energetic features extracted from MADDY simulation 

outputs. The baseline accuracy, computed using a Dummy Classifier, ranged from 33–59% 

across six case studies (1–6), depending on which kinetic state dominated the dataset. Because 

growth and catastrophe were much more frequent than rescue or shortening, the authors applied 

the Synthetic Minority Oversampling Technique (SMOTE) to balance the classes by replicating 

underrepresented examples. 

Among traditional classifiers, Logistic Regression (LR) without SMOTE performed the worst 

(43.1–65.1% accuracy), while Support Vector Machines (SVM) and K-Nearest Neighbors 

(KNN) with SMOTE achieved the highest single-model performance (64.2–84.1%). Ensemble 

approaches—Bagging (BAG), Random Forest (RF), and Extreme Gradient Boosting (XGB)—

significantly outperformed all single classifiers, achieving accuracies between 74.0% and 87.3% 

across all six case studies. These results are summarized in Table 2 of the original paper, which 

identified RF and XGB as the top-performing models for the majority of cases. 



 

FIGURE 13. Box and whisker plots comparing prediction accuracy for various classification 

and ensemble methods (LDA, SVM, BAG, RF, ET, and XGB). The green line indicates the 

median for each method, while red arrowheads indicate the mean values.  

For example, Case Study 1 (25 μM tubulin, kₕyd = 2 s⁻¹) achieved 74% accuracy using RF, while 

Case Study 2 (25 μM, kₕyd = 4 s⁻¹) reached 87.1% using RF/XGB. Under high-concentration 

conditions (250 μM tubulin, kₕyd = 5–10 s⁻¹, Case Studies 4–6), ensemble accuracy remained 

robust (77–87%), confirming that these models generalize well across biochemical conditions. 

Confusion matrix analyses revealed that growth and catastrophe were predicted with the highest 

precision, typically exceeding 90–95%, while rescue and shortening were more difficult to 

classify due to overlapping feature distributions. Prediction accuracy was positively correlated 

with class population size—states with more samples (growth, catastrophe) were consistently 

better classified than rare states (rescue, shortening). XGB in particular achieved more consistent 

classification across all states than RF, suggesting stronger sensitivity to minority-state patterns. 

To further quantify performance, the authors used Precision-Recall (PR) and Receiver Operating 

Characteristic (ROC) curves. Because the dataset was imbalanced, PR curves were prioritized as 

a more informative metric. The Area Under the PR Curve (AUC) values confirmed the high 

discriminative ability of ensemble methods: 

• Growth: AUC 0.86–0.96 

• Catastrophe: AUC 0.91–0.95 

• Shortening: AUC 0.60–0.86 

• Rescue: AUC 0.63–0.91 



 

FIGURE 14. Classification quality analysis with Precision-Recall curves: PR curves comparing 

the overall quality value of classification attained using SVM with RBF kernel (red curves), 

Random Forest (blue curves), and XGBoost (green curves) for MT catastrophe (panel A), MT 

growth (panel B), MT rescue (panel C), and MT shortening (panel D). The closer the curve is to 

the upper right-hand corner, the better is the model prediction. 

RF and XGB outperformed SVM in nearly all cases, with XGB yielding slightly higher AUC 

values overall. For example, in Case Study 2, both RF and XGB achieved AUCs of 0.96 for 

growth and 0.95 for catastrophe, while SVM lagged at 0.86 and 0.91, respectively. 

Lastly, the authors used SHapley Additive exPlanations (SHAP) analysis to interpret the 

predictions and assign an importance value to each feature. The most significant finding was a 

concentration-dependent shift in feature importance: the molecular features controlling dynamic 

instability at a physiological tubulin concentration (25 μM) were drastically different from those 

at a high concentration (250 μM) (Figure 15).  



 

FIGURE 15. Feature importance plots obtained with the XGB method, ranking the features by 

their mean absolute SHAP values — higher SHAP values correspond to stronger influence on the 

predicted kinetic state. 

This insight—that the molecular determinants of dynamic instability are condition-dependent—

was a novel discovery that demonstrates the power of combining physically realistic 

computational models with interpretable machine learning. 

This work serves as a powerful example of how machine learning can guide experimental 

design, advising biophysicists to focus their efforts on 1) Measuring MT tip width and lattice 

structure at low tubulin concentrations, and/or 2) Tracking GTP/GDP composition and lateral 

interactions at high concentrations. 
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