Lecture 4: Resampling Methods

Resampling methods are an indispensable tool in modern statistics. They involve repeatedly
drawing samples from a training set and refitting a model of interest on each sample in order to obtain
additional information about the fitted model. For example, to estimate the variability of a linear
regression fit, we can repeatedly draw different samples from the training data, fit a linear
regression to each new sample, and then examine the extent to which the resulting fits differ. Such
an approach may allow us to obtain information that would not be available from fitting the model
only once using the original training sample.

Resampling approaches can be computationally expensive, because they involve fitting the same
statistical method multiple times using different subsets of the training data. However, due to recent
advances in computing power, the computational requirements of resampling methods generally
are not prohibitive. In this chapter, we discuss two of the most commonly used resampling methods,
cross-validation and the bootstrap. Both methods are important tools in the practical application of
many statistical learning procedures. For example, cross-validation can be used to estimate the test
error associated with a given statistical learning method in order to evaluate its performance, or to
select the appropriate level of flexibility. The process of evaluating a model’s performance is known
as model assessment, whereas the process of selecting the proper level of flexibility for a model is
known as model selection. The bootstrap is used in several contexts, most commonly to provide a
measure of accuracy of a parameter estimate or of a given statistical learning method.

Cross-Validation

In linear models, we discuss the distinction between the test error rate and the training error rate.
The test error is the average error that results from using a statistical learning method to predict
the response on a new observation — that is, a measurement that was not used in training the
method. Given a data set, the use of a particular statistical learning method is warranted if it results
in a low test error. The test error can be easily calculated if a designated test set is available.
Unfortunately, this is usually not the case. In contrast, the training error can be easily calculated
by applying the statistical learning method to the observations used in its training. But as we saw
before, the training error rate often is quite different from the test error rate, and in particular the
former can dramatically underestimate the latter.

In the absence of a very large, designated test set that can be used to directly estimate the test error
rate, a number of techniques can be used to estimate this quantity using the available training data.
Some methods make mathematical adjustment to the training error rate in order to estimate the test
error rate. In this section, we instead consider a class of methods that estimate the test error rate by
holding out a subset of the training observations from the fitting process, and then applying the
statistical learning method to those held out observations. First, for simplicity we assume that we
are interested in performing regression with a quantitative response. Next, we consider the case of
classification with a qualitative response. As we will see, the key concepts remain the same
regardless of whether the response is quantitative or qualitative.



The Validation Set Approach

Suppose that we would like to estimate the test error associated with fitting a particular statistical
learning method on a set of observations. The validation set approach, displayed in Figure 1, is a
very simple strategy for this task. It involves randomly dividing the available set of observations
into two parts, a training set and a validation set or hold-out set. The model is fit on the training
set, and the fitted model is used to predict the responses for the observations in the validation set.
The resulting validation set error rate—typically assessed using MSE in the case of a quantitative
response—provides an estimate of the test error rate.

l123 n

1

¥ 2213 o1

FIGURE 1. A schematic display of the validation set approach. A set of n observations are
randomly split into a training set (shown in blue, containing observations 7, 22, and 13, among
others) and a validation set (shown in beige, and containing observation 91, among others). The
statistical learning method is fit on the training set, and its performance is evaluated on the
validation set.

Using MSE as a measure of validation set error, are shown in the left-hand panel of Figure 2. The
validation set MSE for the quadratic fit is considerably smaller than for the linear fit. However, the
validation set MSE for the cubic fit is actually slightly larger than for the quadratic fit. This implies
that including a cubic term in the regression does not lead to better prediction than simply using a
quadratic term.

M M 28
|
26 28
1

X2 24
1

Pp— —
TR —p—a——

Mean Squared Errar
2
[

Mean Squared Error

16 18 20
1

16 18 20
1

Degree of Polynomial Degree of Polynomial

FIGURE 2. The validation set approach was used on the Auto data set in order to estimate the test
error that results from predicting mpg using polynomial functions of horsepower. Left: Validation
error estimates for a single split into training and validation data sets. Right: The validation method
was repeated ten times, each time using a different random split of the observations into a training



set and a validation set. This illustrates the variability in the estimated test MSE that results from
this approach.

Recall that in order to create the left-hand panel of Figure 2, we randomly divided the data set into
two parts, a training set and a validation set. If we repeat the process of randomly splitting the
sample set into two parts, we will get a somewhat different estimate for the test MSE. As an
illustration, the right-hand panel of Figure 2 displays ten different vali- dation set MSE curves from
the Auto data set, produced using ten different random splits of the observations into training and
validation sets. All ten curves indicate that the model with a quadratic term has a dramatically
smaller validation set MSE than the model with only a linear term. Furthermore, all ten curves
indicate that there is not much benefit in including cubic or higher-order polynomial terms in the
model. But it is worth noting that each of the ten curves results in a different test MSE estimate for
each of the ten regression models considered. And there is no consensus among the curves as to
which model results in the smallest validation set MSE. Based on the variability among these
curves, all that we can conclude with any confidence is that the linear fit is not adequate for this
data.

1. Asis shown in the right-hand panel of Figure 2, the validation estimate of the test error rate
can be highly variable, depending on precisely which observations are included in the
training set and which observations are included in the validation set.

2. In the validation approach, only a subset of the observations—those that are included in
the training set rather than in the validation set—are used to fit the model. Since statistical
methods tend to perform worse when trained on fewer observations, this suggests that the
validation set error rate may tend to overestimate the test error rate for the model fit on the
entire data set.

In the coming subsections, we will present cross-validation, a refinement of the validation set
approach that addresses these two issues.

Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) is closely related to the validation set approach, but it
attempts to address that method’s drawbacks.

Like the validation set approach, LOOCYV involves splitting the set of observations into two parts.
However, instead of creating two subsets of comparable size, a single observation (x4, y;) is used
for the validation set, and the remaining observations {(x,, y,), ..., (X5, )} make up the training
set. The statistical learning method is fit on the n — 1 training observations, and a prediction y; is
made for the excluded observation, using its value xi. Since (x1, y1) was not used in the fitting
process, MSE; = (y; — ¥7)? provides an approximately unbiased estimate for the test error. But
even though MSE1 is unbiased for the test error, it is a poor estimate because it is highly variable,
since it is based upon a single observation (xq,y;).

We can repeat the procedure by selecting (x,,y,) for the validation data, training the statistical
learning procedure on the n — 1 observations {(xy,v;), (x2,¥3), ..., (X, ¥,)}, and computing



MSE, = (y, — ¥3)*. Repeating this approach n times produces n squared errors, MSE ..., MSE,,.
The LOOCYV estimate for the test MSE is the average of these n test error estimates:

1
i=1

A schematic of the LOOCYV approach is illustrated in Figure 3.

123 n
123 n
123 n
123 n
123 n

FIGURE 3. A schematic display of LOOCV. A set of n data points is repeatedly split into a training
set (shown in blue) containing all but one observation, and a validation set that contains only that
observation (shown in beige). The test error is then estimated by averaging the n resulting MSE’s.
The first training set contains all but observation 1, the second training set contains all but
observation 2, and so forth.

LOOCYV has a couple of major advantages over the validation set approach. First, it has far less
bias. In LOOCYV, we repeatedly fit the statistical learning method using training sets that contain
n — 1 observations, almost as many as are in the entire data set. This is in contrast to the validation
set approach, in which the training set is typically around half the size of the original data set.
Consequently, the LOOCYV approach tends not to overestimate the test error rate as much as the
validation set approach does. Second, in contrast to the validation approach which will yield
different results when applied repeatedly due to randomness in the training/validation set splits,
performing LOOCYV multiple times will always yield the same results: there is no randomness in
the training/validation set splits.

We used LOOCYV on the Auto data set in order to obtain an estimate of the test set MSE that results
from fitting a linear regression model to predict mpg using polynomial functions of horsepower.
The results are shown in the left-hand panel of Figure 4.



LooCY 10-fold CV

& & 7
- -
2 # 4 S & -
i . w
=- -
o4 3]
2 B
3§ T 8
=4 =4
w =] wy =] Y s
. & 4
5 . Tt e—e—e—e—+—"| & 1 ——— ==
= o
= - = -
e -
I I I I I L I | I I
2 4 g 8 10 2 4 B B 10
Degree of Polynomial Degree of Polynomial

FIGURE 4. Cross-validation was used on the Auto data set in order to estimate the test error that
results from predicting mpg using polynomial functions of horsepower. Left: The LOOCV error
curve. Right: 10-fold CV was run nine separate times, each with a different random split of the
data into ten parts. The figure shows the nine slightly different CV error curves.

LOOCY has the potential to be expensive to implement, since the model has to be fit n times. This
can be very time consuming if n is large, and if each individual model is slow to fit. With least
squares linear or polynomial regression, an amazing shortcut makes the cost of LOOCV the same
as that of a single model fit! The following formula holds:

n
1 yi — Ji P
== 2
Ve nZ(l—hi) )
1=

where y; is the ith fitted value from the original least squares fit, and h; is the leverage. This is like
the ordinary MSE, except the ith residual is divided by 1 — h;. The leverage lies between 1/n and
1, and reflects the amount that an observation influences its own fit. Hence the residuals for high-
leverage points are inflated in this formula by exactly the right amount for this equality to hold.

LOOCYV is a very general method, and can be used with any kind of predictive modeling.

k-Fold Cross-Validation

An alternative to LOOCYV is k-fold CV. This approach involves randomly dividing the set of
observations into k groups, or folds, of approximately equal size. The first fold is treated as a
validation set, and the method is fit on the remaining k — 1 folds. The mean squared error,
MSE;, is then computed on the observations in the held-out fold. This procedure is repeated k
times; each time, a different group of observations is treated as a validation set. This process
results in k estimates of the test error, MSE;, MSE,, ..., MSE},. The k-fold CV estimate is
computed by averaging these values,



k
1

=1

Figure 5 illustrates the k-fold CV approach.

123 n
L ]

11765 47

11785 47

11765 47

11765 47

11765 47

FIGURE 5. A schematic display of 5-fold CV. A set of n observations is randomly split into five
non-overlapping groups. Each of these fifths acts as a validation set (shown in beige), and the
remainder as a training set (shown in blue). The test error is estimated by averaging the five
resulting MSE estimates.

It is not hard to see that LOOCYV is a special case of k-fold CV in which k is set to equal n. In
practice, one typically performs k-fold CV using k = 5 or k = 10. What is the advantage of using
k =5 or k = 10 rather than k = n? The most obvious advantage is computational. LOOCV
requires fitting the statistical learning method n times. This has the potential to be computationally
expensive (except for linear models fit by least squares, in which case formula (2) can be used).
But cross-validation is a very general approach that can be applied to almost any statistical learning
method. Some statistical learning methods have computationally intensive fitting procedures, and
so performing LOOCV may pose computational problems, especially if n is extremely large. In
contrast, performing 10-fold CV requires fitting the learning procedure only ten times, which may
be much more feasible. As we see later sections, there also can be other non-computational
advantages to performing 5-fold or 10-fold CV, which involve the bias-variance trade-off.

The right-hand panel of Figure 4 displays nine different 10-fold CV estimates for the Auto data set,
each resulting from a different random split of the observations into ten folds. As we can see from
the figure, there is some variability in the CV estimates as a result of the variability in how the
observations are divided into ten folds. But this variability is typically much lower than the
variability in the test error estimates that results from the validation set approach (right-hand panel
of Figure 2).

When we perform cross-validation, our goal might be to determine how well a given statistical
learning procedure can be expected to perform on independent data; in this case, the actual estimate



of the test MSE is of interest. But at other times we are interested only in the location of the
minimum point in the estimated test MSE curve. This is because we might be performing cross-
validation on a number of statistical learning methods, or on a single method using different levels
of flexibility, in order to identify the method that results in the lowest test error. For this purpose,
the location of the minimum point in the estimated test MSE curve is important, but the actual
value of the estimated test MSE is not.

Mean Squared Error
1
f,-"'

Mean Squared Emor
1
A
Mean Squared Ermrar
[
T

o
o

Flaxibility Flaxibility Flaxibyility

FIGURE 6. True and estimated test MSE for the simulated data sets in Lecture 1 Figures 9 (left),
10 (center), and 11 (right). The true test MSE is shown in blue, the LOOCV estimate is shown as
a black dashed line, and the 10-fold CV estimate is shown in orange. The crosses indicate the
minimum of each of the MSE curves.

Bias-Variance Trade-Off for k-Fold Cross-Validation

We mentioned that k-fold CV with k < n has a computational advantage to LOOCV. But putting
computational issues aside, a less obvious but potentially more important advantage of k-fold CV
is that it often gives more accurate estimates of the test error rate than does LOOCYV. This has to
do with a bias-variance trade-off.

It was mentioned that the validation set approach can lead to overestimates of the test error rate,
since in this approach the training set used to fit the statistical learning method contains only half
the observations of the entire data set. Using this logic, it is not hard to see that LOOCYV will give
approximately unbiased estimates of the test error, since each training set contains n — 1
observations, which is almost as many as the number of observations in the full data set. And
performing k-fold CV for, say, k = 5 or k = 10 will lead to an intermediate level of bias, since
each training set contains (k — 1)n/k observations—fewer than in the LOOCV approach, but
substantially more than in the validation set approach. Therefore, from the perspective of bias
reduction, it is clear that LOOCYV is to be preferred to k-fold CV.

However, we know that bias is not the only source for concern in an estimating procedure; we
must also consider the procedure’s variance. It turns out that LOOCYV has higher variance than
does k-fold CV with k < n. Why is this the case? When we perform LOOCYV, we are in effect



averaging the outputs of n fitted models, each of which is trained on an almost identical set of
observations; therefore, these outputs are highly (positively) correlated with each other. In contrast,
when we perform k-fold CV with k < n, we are averaging the outputs of k fitted models that are
somewhat less correlated with each other, since the overlap between the training sets in each model
is smaller. Since the mean of many highly correlated quantities has higher variance than does the
mean of many quantities that are not as highly correlated, the test error estimate resulting from
LOOCYV tends to have higher variance than does the test error estimate resulting from k-fold CV.

To summarize, there is a bias-variance trade-off associated with the choice of k in k-fold cross-
validation. Typically, given these considerations, one performs k-fold cross-validation using k =
5or k = 10, as these values have been shown empirically to yield test error rate estimates that
suffer neither from excessively high bias nor from very high variance.

Cross-Validation on Classification Problems

In this chapter so far, we have illustrated the use of cross-validation in the regression setting where
the outcome Y is quantitative, and so have used MSE to quantify test error. But cross-validation
can also be a very useful approach in the classification setting when Y is qualitative. In this setting,
cross-validation works just as described earlier in this chapter, except that rather than using MSE
to quantify test error, we instead use the number of misclassified observations. For instance, in the
classification setting, the LOOCYV error rate takes the form

n
1
CV(n) = ')TLZ ET'T'i (4')
i=1

where Err; = [(y; # ¥;). The k-fold CV error rate and validation set error rates are defined
analogously.

As an example, we fit various logistic regression models on the two-dimensional classification data
displayed in Lecture 1 Figure 13. In the top-left panel of Figure 7, the black solid line shows the
estimated decision boundary resulting from fitting a standard logistic regression model to this data
set. Since this is simulated data, we can compute the true test error rate, which takes a value of
0.201 and so is substantially larger than the Bayes error rate of 0.133. Clearly logistic regression
does not have enough flexibility to model the Bayes decision boundary in this setting. We can
easily extend logistic regression to obtain a non-linear decision boundary by using polynomial
functions of the predictors, as we did in the regression setting.



Degree=1 Degree=2

Degree=3 Degree=4

FIGURE 7. Logistic regression fits on the two-dimensional classification data displayed in Figure
2.13. The Bayes decision boundary is represented using a purple dashed line. Estimated decision
boundaries from linear, quadratic, cubic and quartic (degrees 1-4) logistic regressions are
displayed in black. The test error rates for the four logistic regression fits are respectively 0.201,
0.197, 0.160, and 0.162, while the Bayes error rate is 0.133.

The Bootstrap

The bootstrap is a widely applicable and extremely powerful statistical tool that can be used to
quantify the uncertainty associated with a given estimator or statistical learning method. As a
simple example, the bootstrap can be used to estimate the standard errors of the coefficients from
a linear regression fit. In the specific case of linear regression, this is not particularly useful, since
we saw that standard statistical software such as R outputs such standard errors automatically.
However, the power of the bootstrap lies in the fact that it can be easily applied to a wide range of
statistical learning methods, including some for which a measure of variability is otherwise
difficult to obtain and is not automatically output by statistical software.

Here, we illustrate the bootstrap on a toy example in which we wish to determine the best
investment allocation under a simple model. We will also explore the use of the bootstrap to assess
the variability associated with the regression coefficients in a linear model fit.



Suppose that we wish to invest a fixed sum of money in two financial assets that yield returns of
X and Y, respectively, where X and Y are random quantities. We will invest a fraction a of our
money in X, and will invest the remaining 1 — « in Y. Since there is variability associated with the
returns on these two assets, we wish to choose o to minimize the total risk, or variance, of our
investment. In other words, we want to minimize Var(aX + (1 — a)Y). One can show that the
value that minimizes the risk is given by

2
0"y — Oxy

a = (5)

O-Zx+o-zy_ ZO-XY

Where 62y = Var(X), 6y = Var(Y), and oyy = Cov(X,Y). In reality, the quantities 6%y, 52y,
and oy are unknown. We can compute estimates for these quantities, 62y, 62y, and Gyy, using a
data set that contains past measurements for X and Y. We can then estimate the value of « that
minimizes the variance of our investment using
N A
@=L O (6)
0%y + 6%y — 20yy

Figure 8 illustrates this approach for estimating o on a simulated data set. In each panel, we
simulated 100 pairs of returns for the investments X and Y. We used these returns to estimate
02y,0%y, and ayy, which we then substituted into Eq. (6) in order to obtain estimates for a. The
value of & resulting from each simulated data set ranges from 0.532 to 0.657.

. - :
4 . 58 #° :l. " | - .. a ..
- . % l..‘: .. - L) .b#.&.: N
= . De . . . 5 .
- ..*..... " = = L e Y -
] welTo e _[pss dies
[ ] :. ' .‘....'-.‘":..
T e I‘. ol ® . . . @
T .I .I T T .I T I.. T T
2 1 1 2 2 1 o 1 H
X
. R .
o r " n TR
s 0" - l: L]
- '.'.-k"' e - .;\. 5:..':.:
L™ -
> ° A H m\" . N .. ..’ .-
" % < A
T LI os" ™ T :.'o.... .
o as 'f.. P L ..‘ .
L] . - l'c.
7 . T . J
3 2 I| ||1 1 H .Ia 1 o 1 H ]
X X

FIGURE 8. Each panel displays 100 simulated returns for investments X and Y. From left to right
and top to bottom, the resulting estimates for a are 0.576, 0.532, 0.657, and 0.651.

It is natural to wish to quantify the accuracy of our estimate of a. To estimate the standard deviation
of @, we repeated the process of simulating 100 paired observations of X and Y, and estimating o



using (5.7), 1,000 times. We thereby obtained 1,000 estimates for a, which we can call
Ay, &, ... 01900- The left-hand panel of Figure 9 displays a histogram of the resulting estimates.

—_—

T T
Trua Booisirap

T L

FIGURE 9. Left: A histogram of the estimates of o obtained by generating 1,000 simulated data sets from
the true population. Center: A histogram of the estimates of o obtained from 1,000 bootstrap samples from
a single data set. Right: The estimates of a displayed in the left and center panels are shown as boxplots.
In each panel, the pink line indicates the true value of a.

The mean over all 1,000 estimates for « is

1000

1
X = —— AT =
a_1000 E a 0.5996,
r=1

very close to @ = 0.6, and the standard deviation of the estimates is

1000
1

/\_ — 2 —
1000_1Z(ar Q) 0.083
T

=1

This gives us a very good idea of the accuracy of &: SE (@) =~ 0.083. So roughly speaking, for a
random sample from the population, we would expect & to differ from a by approximately 0.08,
on average.

In practice, however, the procedure for estimating SE(&) outlined above cannot be applied, because
for real data we cannot generate new samples from the original population. However, the bootstrap
approach allows us to use a computer to emulate the process of obtaining new sample sets, so that
we can estimate the variability of @ without generating additional samples. Rather than repeatedly
obtaining independent data sets from the population, we instead obtain distinct data sets by
repeatedly sampling observations from the original data set.



This approach is illustrated in Figure 10 on a simple data set, which we call Z, that contains only
n = 3 observations. We randomly select n observations from the data set in order to produce a
bootstrap data set, Z*!. The sampling is performed with replacement, which means that the same
observation can occur more than once in the bootstrap data set. In this example, Z*! contains the
third observation twice, the first observation once, and no instances of the second observation.
Note that if an observation is contained in Z*!, then both its X and Y values are included. We can
use Z*! to produce a new bootstrap estimate for o, which we call @*1. This procedure is repeated
B times for some large value of B, in order to produce B different bootstrap data sets,
Z*1,7*% ..Z*B, and B corresponding o estimates, @**,@** ... @"%. We can compute the standard
error of these bootstrap estimates using the formula

B B
SEa@ = |72y @ —% Y @y
B—-1 4 B
r:

r'=1

This serves as an estimate of the standard error of & estimated from the original data set.

Obs | X Y
3 53 |28 s
(04

1 43 |24
3 53 |28

obs [X |Y Obs [X Y
2 2

1 43 |24 = 21 LI .
3 53 |28 -

2 2.1 |11 ]

3 53 |28 ! _4'3 24

T

Original Data (Z) .

Obs | X |Y s
5 ot

2 21 |11
2 21 |11
1 43 |24

FIGURE 10. A graphical illustration of the bootstrap approach on a small sample containing n =
3 =observations. Each bootstrap data set contains n observations, sampled with replacement from
the original data set. Each bootstrap data set is used to obtain an estimate of «.

The bootstrap approach is illustrated in the center panel of Figure 10, which displays a histogram
of 1,000 bootstrap estimates of a, each computed using a distinct bootstrap data set. This panel
was constructed on the basis of a single data set, and hence could be created using real data.



Note that the histogram looks very similar to the left-hand panel which displays the idealized
histogram of the estimates of a obtained by generating 1,000 simulated data sets from the true
population. In particular the bootstrap estimate (SE (&) from (5.8) is 0.087, very close to the
estimate of 0.083 obtained using 1,000 simulated data sets.

Case Study: Microtubule Dynamic Instability Modeling

Microtubules (MTs), cylindrical polymers of af-tubulin dimers, are fundamental to cell
structure and function. They exhibit dynamic instability, spontaneously switching between four
distinct kinetic states: growth, shortening (shrinkage), rescue (switching from shortening to
growth), and catastrophe (switching from growth to shortening). While experiments can track
MT length changes over time, they struggle to simultaneously and with sufficient temporal
resolution reveal the underlying structural and energetic molecular features that govern these
transitions. This limited view makes it difficult to answer central questions, such as what
specifically triggers catastrophe or rescue, and if the determinants of these states change under
different cellular conditions.

QGO GTP-tubulin dimer @® GDP-tubulin dimer

FIGURE 11. the 4 kinetic states of microtubule: growth, rescue, shrinkage (shortening), and catastrophe
[1].

The Modeling Approach

To overcome these experimental limitations, Kliuchnikov et al. [2] developed the Microtubule
Assembly and Disassembly DYnamics (MADDY') computational model. This model was
rigorously parameterized and validated against experimental measurements of MT growth rates,
shortening rates, and force generation, ensuring the simulations captured realistic MT behavior.
The authors created six case studies to simulate:

e Case Studies 1-3 simulate physiological conditions (normal tubulin concentration, 25
uM) but with increasing GTP hydrolysis rates — testing how chemical energy turnover
affects stability.

e Case Studies 4-6 simulate high-tubulin conditions (250 pM) where microtubule growth
is faster, but also more dynamic, again across increasing hydrolysis rates.



Utilizing GPU acceleration, the researchers generated rich time-series data, tracking both MT
length and molecular structure as the system spontaneously transitioned between the four kinetic
states.

The output from these simulations was used to construct a supervised learning problem.
Trajectories were manually labeled into one of the four kinetic states based on the change in
length over time. Simultaneously, fourteen quantitative features were extracted at each time
point, encompassing both structural and energetic properties.

e Structural features: MT length (L), Number of hydrolyzed GDP-bound dimers (1,y4),
MT tip length (1) and width (w), Average longitudinal curvature (k;,,4), Average lateral
curvature (k4. ), Number of longitudinal and lateral interactions (n;5pg, Kiqt)

e Energetic features: Total lateral and longitudinal interaction energies in the lattice
(Uiat Urong), Interaction energies at the MT tip (w;4¢, Uiong), Energies required to
complete the MT to a full cylinder ( UZz?, Ufss)

The challenge was to correctly classify the kinetic state (label) based solely on the 14 feature
measurements at that instant.

1 2 3 L

1000

: 289 | 800
400 4 600 100
300 300
200 200 | I 400 | | :mt; I | l |
1|| |“l.11 ] I I Y et ol fogly | 1 ]
2 24 2

14 16 18 20 22 2 20 28 30 32 150-140-130-120-110-100 140 =120 =100 -80 -60
L, nm Dhyd U, kcal/mol Ujone» keal/mol

long>

5 6 7 8

1000 500 2500

800 900 200 2000
600 %{}) 300 1500
400 ‘%)(; | | 200 1000
| 1001 [ |

2000 | 100 500

0 - 0 0
=70 =60 =50 —40 -30 -20 140 ~120 =100 —80 —60 0.000 0.005 0.010 0,015 0,020 0150 0.152 0.154 0156 0.158

uy,, keal/mol Uppe» keal/mol Kjongs 1/nM K> 1/nm

800 1000 800

988 600 800 600

‘{8& | | 400 2:;:; 400

20¢ | L 200 | I I > 200 I I |

fogf] | I e 11T 200 | | oL P
0.3 04 0.5 0.6 0.7 0.8 0.9 2345678910 12 13 14 15 1.6 1.7 2345678910

Nong Njaq

13 14
e

500
400
300

BE
A LS NP || [ |
250 -200 —150 -100 -50 450-400-350-300-250-200-150

Jadd add \
U™, keal/mol U | keal/mol
lat ° long

FIGURE 12. Fourteen quantitative features used for machine learning classification:

(1) MT length (L), (2) number of hydrolyzed af-tubulin dimers in the lattice, (3) total lateral
interaction energy, (4) total longitudinal interaction energy, (5) lateral interaction energy at the
tip, (6) longitudinal interaction energy at the tip, (7) average longitudinal curvature, (8) average
lateral curvature, (9) MT tip length, (10) MT tip width, (11) average number of longitudinal
interactions per protofilament, (12) average number of lateral interactions per helical pitch, (13)
lateral energy required to complete the cylinder, and (14) longitudinal energy required to



complete the cylinder. These features were selected based on current hypotheses about molecular
control of MT growth and shortening.

Robust Assessment and Classifier Performance

This approach is crucial because: 1) it addresses the validation set variability. A single train-test
split can give misleading results depending on which observations happen to be in the test set. 2)
It maximizes data usage. Unlike a single validation set approach, all data are used for both
training and testing. 3) It provides uncertainty estimates. The variance across the 15 trials
indicates how stable the model performance is.

Multiple classification algorithms were evaluated:

e Single classifiers: Linear Discriminant Analysis (LDA), Support Vector Machines
(SVM), Logistic Regression (LR), K-Nearest Neighbors (KNN)

e Ensemble methods: Bagging Classifier (BAG), Random Forest (RF), Extra Trees (ET),
XGBoost (XGB)

The researchers also compared their results to Leave-One-Out Cross-Validation (LOOCV) for
selected cases. While LOOCV gave similar accuracy estimates, it was computationally
prohibitive given the dataset size and number of models being compared. The 5-fold CV
provided nearly the same information at much lower computational cost.

To evaluate classification performance, the authors trained several algorithms to distinguish
between the four kinetic states of MT dynamics—assembly, catastrophe, shortening, and
rescue—based on the 14 structural and energetic features extracted from MADDY simulation
outputs. The baseline accuracy, computed using a Dummy Classifier, ranged from 33-59%
across six case studies (1-6), depending on which kinetic state dominated the dataset. Because
growth and catastrophe were much more frequent than rescue or shortening, the authors applied
the Synthetic Minority Oversampling Technique (SMOTE) to balance the classes by replicating
underrepresented examples.

Among traditional classifiers, Logistic Regression (LR) without SMOTE performed the worst
(43.1-65.1% accuracy), while Support Vector Machines (SVM) and K-Nearest Neighbors
(KNN) with SMOTE achieved the highest single-model performance (64.2—84.1%). Ensemble
approaches—Bagging (BAG), Random Forest (RF), and Extreme Gradient Boosting (XGB)—
significantly outperformed all single classifiers, achieving accuracies between 74.0% and 87.3%
across all six case studies. These results are summarized in Table 2 of the original paper, which
identified RF and XGB as the top-performing models for the majority of cases.



90% A
85% % % % @

80%

acy

g
=

75%

ccu

< 70%

65% é %

60%

LDA SVM BAG RF ET XGB
Methods

FIGURE 13. Box and whisker plots comparing prediction accuracy for various classification
and ensemble methods (LDA, SVM, BAG, RF, ET, and XGB). The green line indicates the
median for each method, while red arrowheads indicate the mean values.

For example, Case Study 1 (25 pM tubulin, kyyd =2 s™") achieved 74% accuracy using RF, while
Case Study 2 (25 uM, knyd = 4 s7') reached 87.1% using RF/XGB. Under high-concentration
conditions (250 uM tubulin, kyyd = 5-10 s7!, Case Studies 4—6), ensemble accuracy remained
robust (77-87%), confirming that these models generalize well across biochemical conditions.

Confusion matrix analyses revealed that growth and catastrophe were predicted with the highest
precision, typically exceeding 90-95%, while rescue and shortening were more difficult to
classify due to overlapping feature distributions. Prediction accuracy was positively correlated
with class population size—states with more samples (growth, catastrophe) were consistently
better classified than rare states (rescue, shortening). XGB in particular achieved more consistent
classification across all states than RF, suggesting stronger sensitivity to minority-state patterns.

To further quantify performance, the authors used Precision-Recall (PR) and Receiver Operating
Characteristic (ROC) curves. Because the dataset was imbalanced, PR curves were prioritized as
a more informative metric. The Area Under the PR Curve (AUC) values confirmed the high
discriminative ability of ensemble methods:

e Growth: AUC 0.86-0.96

e Catastrophe: AUC 0.91-0.95
e Shortening: AUC 0.60-0.86
e Rescue: AUC 0.63-0.91



Precision

—— SVM (rbf) | —— SVM (rbf)

0.4 — RF 0.5 — RF
03l — XGB — XGB
0.0 02 04 06 08 10 0.0 02 04 06 08 1.0
Recall Recall
1.0) C 1.0) D
0.8 0.8
g =
7 0.6 Zos
2 =
= &
0.4 0.4
—— SVM (rbf) ¥ —— SVM (rbf)
—— RF —— RF
0.2 — xGB 02l — xcB
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

FIGURE 14. Classification quality analysis with Precision-Recall curves: PR curves comparing
the overall quality value of classification attained using SVM with RBF kernel (red curves),
Random Forest (blue curves), and XGBoost (green curves) for MT catastrophe (panel A), MT
growth (panel B), MT rescue (panel C), and MT shortening (panel D). The closer the curve is to
the upper right-hand corner, the better is the model prediction.

RF and XGB outperformed SVM in nearly all cases, with XGB yielding slightly higher AUC
values overall. For example, in Case Study 2, both RF and XGB achieved AUCs of 0.96 for
growth and 0.95 for catastrophe, while SVM lagged at 0.86 and 0.91, respectively.

Lastly, the authors used SHapley Additive exPlanations (SHAP) analysis to interpret the
predictions and assign an importance value to each feature. The most significant finding was a
concentration-dependent shift in feature importance: the molecular features controlling dynamic
instability at a physiological tubulin concentration (25 uM) were drastically different from those
at a high concentration (250 uM) (Figure 15).



7 — ™
10 [

| |
13 |
14 |
e

Features

L
3V
12 Rescue

11 B Catastrophe
: N Growth
5 Shortening

00 05 1.0 1.5 20 25 3.0 35
mean(|SHAP value|)

FIGURE 15. Feature importance plots obtained with the XGB method, ranking the features by
their mean absolute SHAP values — higher SHAP values correspond to stronger influence on the
predicted kinetic state.

This insight—that the molecular determinants of dynamic instability are condition-dependent—
was a novel discovery that demonstrates the power of combining physically realistic
computational models with interpretable machine learning.

This work serves as a powerful example of how machine learning can guide experimental
design, advising biophysicists to focus their efforts on 1) Measuring MT tip width and lattice
structure at low tubulin concentrations, and/or 2) Tracking GTP/GDP composition and lateral
interactions at high concentrations.

References

1. Bowne-Anderson H, Zanic M, Kauer M, Howard J. Microtubule dynamic instability: a
new model with coupled GTP hydrolysis and multistep catastrophe. Bioessays. 2013
May;35(5):452-61. doi: 10.1002/bies.201200131. Epub 2013 Mar 27. Erratum in:
Bioessays. 2013 Jun;35(6):579. PMID: 23532586; PMCID: PMC3677417.

2. Kliuchnikov E, Klyshko E, Kelly MS, Zhmurov A, Dima RI, Marx KA, Barsegov V.
Microtubule assembly and disassembly dynamics model: Exploring dynamic instability
and identifying features of Microtubules' Growth, Catastrophe, Shortening, and Rescue.
Comput Struct Biotechnol J. 2022 Jan 31;20:953-974. doi: 10.1016/j.csbj.2022.01.028.
PMID: 35242287; PMCID: PMC8861655.



	Lecture 4: Resampling Methods
	Cross-Validation
	The Validation Set Approach
	Leave-One-Out Cross-Validation
	k-Fold Cross-Validation
	Bias-Variance Trade-Oﬀ for k-Fold Cross-Validation
	Cross-Validation on Classiﬁcation Problems

	The Bootstrap
	Case Study: Microtubule Dynamic Instability Modeling


