Lecture 4 — Results Analysis & Beyond Docking

Goal

The goal of this lecture is to teach how to critically analyze docking results, interpret scores,
evaluate binding poses, and extend docking studies using advanced techniques. Docking generates
predictions of ligand-receptor interactions, but these predictions are approximations.
Understanding their limitations and validating results against experimental data are essential for
meaningful conclusions in drug discovery.

Understanding Good Results

Not all docking outputs are equally informative. To distinguish reliable predictions, it is important
to look beyond raw docking scores. Some strategies are listed below.

Pose clustering

When multiple runs produce similar ligand conformations, these clusters suggest that the ligand
has a preferred binding mode and the sampling algorithm is capturing a realistic energy minimum.
Conversely, widely scattered poses indicate uncertainty or insufficient sampling.
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Figure 1: Example of visualization of results from AutoDock, clustered hierarchically!.
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Example 1: For kinase inhibitors docking to CDK?2, a rigid receptor often produces scattered poses
with no clear cluster. Only when sampling multiple conformations of the activation loop do
clusters emerge, reflecting realistic binding orientations?.

Score funnels

These plots show docking score as a function of pose deviation (e.g., RMSD from a reference
structure). Ideally, the lowest-energy poses cluster near the expected binding mode, forming a
funnel-like distribution. A clear funnel indicates that the scoring function can discriminate between



realistic and unrealistic poses. Flat or noisy distributions suggest that the scoring function may
lack selectivity, and low-energy poses might be artifacts.
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Figure 2: Modeling of the interaction between ExoU, a toxin secreted by psueomonas aureginosa,
and monoubiquitin. (A) A scoring funnel plot showing Rosetta energy score (REU) versus RMSD
for the top 5,000 models. The funnel’s trend is indicative of convergence toward a low-energy
binding mode. (B) Best-scoring complex with ExoU catalytic (green), bridging (blue), and
membrane localization (red) domains in complex with ubiquitin (purple)?.

Example 1: Docking flexible ligands without accounting for receptor side-chain flexibility can
yield a flat score-RMSD plot, where low-energy poses are spread widely and the scoring function
fails to discriminate the correct binding mode.
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Figure 3: Plot of HADDOCK scores vs. interface RMSD from the reference complex
(PDB:1GGR) for the three stages of the docking protocol (blue, green, and red, for it0, itl, and
water refinement respectively). One can clearly see a funnel at low RMSD values when water
refinement is being considered. In it0 and itl, the RMSD vs. HADDOCK score is flat, indicating
no convergence and the scoring function cannot reliably identify the correct binding mode*.



Chemically plausible interactions

Docking scores alone cannot guarantee correct hydrogen bonds, salt bridges, or hydrophobic
contacts. Even low-energy poses must be examined visually for steric clashes and realistic
complementarity with the receptor.

Example 1: Docking HIV-1 protease inhibitors may yield a low-energy pose where the ligand
avoids the catalytic Asp25/Asp25’ residues. Despite the favorable score, this pose is biologically
irrelevant because the essential hydrogen bonds are missing?.

Example 2: In docking BACE] inhibitors, a ligand might occupy the flap region in an unrealistic
conformation, sterically clashing with conserved flap residues. Even with a low docking score,
such a pose would be dismissed upon visual inspection®.

Figure 4: Crystal structures of isolated BACE]1, highlighting the active site aspartate residues:
Asp32 and Asp228 (red spacefill representation), hairpin loop termed ‘flap’ (orange) and the 10s
loop (green)’.

Evaluating Docking Results

Docking scores provide a relative ranking, not absolute binding free energies. Many users
mistakenly interpret docking scores as experimental AG, but scoring functions are simplifications
that ignore entropic contributions, solvation, and protein flexibility. For example, in docking
multiple inhibitors to EGFR, some weak binders may receive more favorable scores than strong
ones because the scoring function overestimates hydrophobic contacts or neglects desolvation
penalties.

RMSD analysis

This is helpful when a reference ligand structure is available. An RMSD under 2 A generally
indicates a successful prediction, but this metric has limitations. Minor deviations in side-chain
positions may increase RMSD without invalidating a pose, and multiple poses can have similar
RMSDs but different key interactions. RMSD should therefore be considered alongside visual
inspection and chemical reasoning.



Example 1 (hypothetical): Redocking ATP to CDK2 produces a predicted pose with an RMSD of
1.2 A relative to the crystal structure. This is considered successful, even though a nearby lysine
side chain shifts slightly to accommodate the ligand. The small side-chain deviation increases
RMSD slightly but does not invalidate the binding mode.

Example 2 (hypothetical): In docking imatinib to BCR-ABL, two predicted poses both have
RMSDs around 1.8 A, but one correctly forms the key hydrogen bond with the hinge region while
the other does not. This shows that similar RMSD values can mask important differences in
interactions, highlighting the need for visual inspection.

Library ranking

Virtual screening campaigns rank thousands of ligands, but top-scoring compounds are not
guaranteed actives. Artifacts and scoring biases are common. Therefore, ranking should be
combined with pose inspection, clustering, and comparison with experimental SAR data.
Integrating multiple evaluation criteria increases confidence in selecting promising candidates.

Example 1 (hypothetical): In a virtual screen of 50,000 compounds against EGFR, the top-scoring
ligand according to the docking program fails to inhibit kinase activity in vitro, while a ligand
ranked 15th shows strong inhibition. The scoring function overestimated the contribution of
hydrophobic contacts in the top-ranked compound.

Example 2 (hypothetical): Docking 10,000 inhibitors to HIV-1 protease shows that several low-
scoring compounds adopt poses that clash sterically with the flaps. Despite favorable scores, these
compounds are false positives. Cross-checking with clustering and visual inspection allowed
identification of truly promising candidates.

Visual Inspection

Visual inspection remains critical despite advances in scoring functions. Docking software cannot
always capture subtle chemical interactions, and some top-scoring poses may be unrealistic.
Analysts should examine:

e Hydrogen bonds, salt bridges, and hydrophobic contacts
o Steric clashes and strained conformations
e Consistency with known SAR or mutagenesis data

This process helps identify “good scores but bad poses.” For example, a ligand might occupy a
pocket region in a way that requires extreme side-chain movement, which is chemically

implausible. Visual inspection ensures that top-ranked compounds are truly reasonable candidates
for further study.

Validation Strategies

Validation builds confidence in docking predictions.



Self-docking (redocking) tests whether the protocol can reproduce a known ligand pose. If the
predicted pose matches the crystal structure, the docking setup is likely valid.

Cross-docking involves docking ligands into multiple receptor conformations. This is useful for
flexible proteins such as kinases or GPCRs, where induced fit can alter the binding site. Cross-
docking evaluates the robustness of the docking protocol across different protein states.

Example 1: Docking dasatinib into three different BCR-ABL conformation: active, intermediate
inactive, and inactive, shows that dasatinib binds selectively to the active (open) conformation®,

Integration with experimental data provides additional validation. If a docking pose predicts a
hydrogen bond with a key residue, mutating that residue should reduce binding experimentally.
Combining computational predictions with mutagenesis, SAR, or biochemical assays strengthens
confidence in the results.

Advanced Docking Approaches
Standard rigid docking has limitations, which advanced techniques address:

Induced fit docking

This allows receptor side chains or backbone segments to move in response to ligand binding,
accommodating flexible pockets such as kinase activation loops or GPCR binding sites.

Hsp90 inhibitors

Hsp90 is a molecular chaperone with a highly flexible N-terminal ATP-binding pocket. When
inhibitors like geldanamycin are docked using rigid receptor models, the predicted poses often fail
to reproduce crystallographic interactions because the lid domain of Hsp90 shifts to accommodate
the ligand. Induced fit docking allows side chains and portions of the backbone to move, capturing
these conformational changes®. This approach reproduces the correct hydrogen bonds between the
inhibitor and key residues such as Asp93 and Lys58, and accurately positions hydrophobic
moieties in the pocket. By accounting for receptor flexibility, induced fit docking improves both
pose accuracy and ranking of potential inhibitors in Hsp90 drug discovery campaigns.

Covalent docking

This models ligands that form chemical bonds with the receptor, accounting for geometric
constraints and energetic penalties. Covalent inhibitors, such as cysteine-targeting kinase
inhibitors, require specialized scoring and sampling.

Ras G12C inhibitors
KRAS GI12C mutants are oncogenic drivers in certain cancers. Covalent inhibitors, such as

sotorasib, target the cysteine at position 12 in the switch-II pocket. Standard docking cannot model
bond formation, so covalent docking is used to account for both the reaction geometry and



energetic penalties of forming the covalent bond. Covalent docking can predict proper electrophile
orientation and optimize noncovalent interactions'!. This allows identification of potent
compounds that specifically react with the mutant cysteine while minimizing off-target effects.
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Figure 5: (A) Structure of Hsp90, (B) Closed lid conformation of ATP binding pocket in Hsp90-
ATP complex, (C), (D) and (E) showing closed lid conformation of ATP binding pocket in Hsp90-
ADP, Hsp90-geldelamycin and Hsp90-radicicol analogue complex respectively'?.
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Figure 6: (A) and (B): Representation of KRAS G12C in complex with ARS-853. The acrylamide
of ARS-853 can form covalent bond with 12 cysteine and extend to switch II region. (C) Structure
of ARS-853'2,

Macrocycle and Peptide Docking
Cyclosporine and cyclophilin A
Cyclosporine A (CsA) is a cyclic undecapeptide immunosuppressant that binds tightly and

stereospecifically to cyclophilin A (CypA), with binding strongly dependent on the macrocycle’s
conformational state. Standard docking methods often struggle with such ligands because they



inadequately sample the vast torsional space and ring conformations of macrocycles. To address
this, ensemble and macrocycle-specific docking approaches have been developed that
systematically explore multiple conformers, improving the ability to reproduce crystallographic
poses. In the case of cyclophilin A, docking studies using cyclosporine A have demonstrated that
incorporating receptor flexibility improves the recovery of accurate binding poses consistent with
crystallographic data!®. These findings underscore that specialized approaches for macrocycle
docking are essential for modeling complex ligands like cyclosporine and can guide the design of
new analogs with improved potency and pharmacokinetic properties.

Figure 7: The cyclophilin A—CsA complex. Cyclophilin A binding site (PDB:1CWA). B-sheets in
light blue, a-helices in red in cyclophilin A structure. CsA is indicated in black and gray. The 19
residues of cyclophilin A bind in CsA are dark blue'4.

High-Throughput Virtual Screening (HTVS)

This approach leverages GPUs and hierarchical docking to handle millions of compounds
efficiently. Post-docking analysis—clustering, visual inspection, and experimental cross-
validation—remains essential to avoid false positives.

SARS-CoV-2 PLpro inhibitors

During the COVID-19 pandemic, millions of compounds were screened virtually against targets
from SARS-CoV-2 using GPU-accelerated docking. HTVS efficiently handled the large dataset,
and post-docking analysis using clustering and visual inspection prioritized compounds with
plausible binding poses'>. Subsequent biochemical testing validated several hits, demonstrating
that HTVS combined with careful pose evaluation can rapidly identify promising antiviral
candidates.
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