
Lecture 4 – Results Analysis & Beyond Docking 

Goal 
The goal of this lecture is to teach how to critically analyze docking results, interpret scores, 

evaluate binding poses, and extend docking studies using advanced techniques. Docking generates 

predictions of ligand-receptor interactions, but these predictions are approximations. 

Understanding their limitations and validating results against experimental data are essential for 

meaningful conclusions in drug discovery. 

Understanding Good Results 

Not all docking outputs are equally informative. To distinguish reliable predictions, it is important 

to look beyond raw docking scores. Some strategies are listed below. 

Pose clustering 

When multiple runs produce similar ligand conformations, these clusters suggest that the ligand 

has a preferred binding mode and the sampling algorithm is capturing a realistic energy minimum. 

Conversely, widely scattered poses indicate uncertainty or insufficient sampling. 

 

Figure 1: Example of visualization of results from AutoDock, clustered hierarchically1. 

Example 1: For kinase inhibitors docking to CDK2, a rigid receptor often produces scattered poses 

with no clear cluster. Only when sampling multiple conformations of the activation loop do 

clusters emerge, reflecting realistic binding orientations2. 

Score funnels 

These plots show docking score as a function of pose deviation (e.g., RMSD from a reference 

structure). Ideally, the lowest-energy poses cluster near the expected binding mode, forming a 

funnel-like distribution. A clear funnel indicates that the scoring function can discriminate between 



realistic and unrealistic poses. Flat or noisy distributions suggest that the scoring function may 

lack selectivity, and low-energy poses might be artifacts. 

 

Figure 2: Modeling of the interaction between ExoU, a toxin secreted by psueomonas aureginosa, 

and monoubiquitin. (A) A scoring funnel plot showing Rosetta energy score (REU) versus RMSD 

for the top 5,000 models. The funnel’s trend is indicative of convergence toward a low-energy 

binding mode. (B) Best-scoring complex with ExoU catalytic (green), bridging (blue), and 

membrane localization (red) domains in complex with ubiquitin (purple)3. 

Example 1: Docking flexible ligands without accounting for receptor side-chain flexibility can 

yield a flat score–RMSD plot, where low-energy poses are spread widely and the scoring function 

fails to discriminate the correct binding mode.  

 

Figure 3: Plot of HADDOCK scores vs. interface RMSD from the reference complex 

(PDB:1GGR) for the three stages of the docking protocol (blue, green, and red, for it0, it1, and 

water refinement respectively). One can clearly see a funnel at low RMSD values when water 

refinement is being considered. In it0 and it1, the RMSD vs. HADDOCK score is flat, indicating 

no convergence and the scoring function cannot reliably identify the correct binding mode4. 



Chemically plausible interactions 

Docking scores alone cannot guarantee correct hydrogen bonds, salt bridges, or hydrophobic 

contacts. Even low-energy poses must be examined visually for steric clashes and realistic 

complementarity with the receptor.  

Example 1: Docking HIV-1 protease inhibitors may yield a low-energy pose where the ligand 

avoids the catalytic Asp25/Asp25’ residues. Despite the favorable score, this pose is biologically 

irrelevant because the essential hydrogen bonds are missing5. 

Example 2: In docking BACE1 inhibitors, a ligand might occupy the flap region in an unrealistic 

conformation, sterically clashing with conserved flap residues. Even with a low docking score, 

such a pose would be dismissed upon visual inspection6. 

 

Figure 4: Crystal structures of isolated BACE1, highlighting the active site aspartate residues: 

Asp32 and Asp228 (red spacefill representation), hairpin loop termed ‘flap’ (orange) and the 10s 

loop (green)7.  

Evaluating Docking Results 

Docking scores provide a relative ranking, not absolute binding free energies. Many users 

mistakenly interpret docking scores as experimental ΔG, but scoring functions are simplifications 

that ignore entropic contributions, solvation, and protein flexibility. For example, in docking 

multiple inhibitors to EGFR, some weak binders may receive more favorable scores than strong 

ones because the scoring function overestimates hydrophobic contacts or neglects desolvation 

penalties. 

RMSD analysis 

This is helpful when a reference ligand structure is available. An RMSD under 2 Å generally 

indicates a successful prediction, but this metric has limitations. Minor deviations in side-chain 

positions may increase RMSD without invalidating a pose, and multiple poses can have similar 

RMSDs but different key interactions. RMSD should therefore be considered alongside visual 

inspection and chemical reasoning. 



Example 1 (hypothetical): Redocking ATP to CDK2 produces a predicted pose with an RMSD of 

1.2 Å relative to the crystal structure. This is considered successful, even though a nearby lysine 

side chain shifts slightly to accommodate the ligand. The small side-chain deviation increases 

RMSD slightly but does not invalidate the binding mode. 

Example 2 (hypothetical): In docking imatinib to BCR-ABL, two predicted poses both have 

RMSDs around 1.8 Å, but one correctly forms the key hydrogen bond with the hinge region while 

the other does not. This shows that similar RMSD values can mask important differences in 

interactions, highlighting the need for visual inspection. 

Library ranking 

Virtual screening campaigns rank thousands of ligands, but top-scoring compounds are not 

guaranteed actives. Artifacts and scoring biases are common. Therefore, ranking should be 

combined with pose inspection, clustering, and comparison with experimental SAR data. 

Integrating multiple evaluation criteria increases confidence in selecting promising candidates. 

Example 1 (hypothetical): In a virtual screen of 50,000 compounds against EGFR, the top-scoring 

ligand according to the docking program fails to inhibit kinase activity in vitro, while a ligand 

ranked 15th shows strong inhibition. The scoring function overestimated the contribution of 

hydrophobic contacts in the top-ranked compound. 

Example 2 (hypothetical): Docking 10,000 inhibitors to HIV-1 protease shows that several low-

scoring compounds adopt poses that clash sterically with the flaps. Despite favorable scores, these 

compounds are false positives. Cross-checking with clustering and visual inspection allowed 

identification of truly promising candidates. 

Visual Inspection 

Visual inspection remains critical despite advances in scoring functions. Docking software cannot 

always capture subtle chemical interactions, and some top-scoring poses may be unrealistic. 

Analysts should examine: 

• Hydrogen bonds, salt bridges, and hydrophobic contacts 

• Steric clashes and strained conformations 

• Consistency with known SAR or mutagenesis data 

This process helps identify “good scores but bad poses.” For example, a ligand might occupy a 

pocket region in a way that requires extreme side-chain movement, which is chemically 

implausible. Visual inspection ensures that top-ranked compounds are truly reasonable candidates 

for further study. 

Validation Strategies 

Validation builds confidence in docking predictions. 



Self-docking (redocking) tests whether the protocol can reproduce a known ligand pose. If the 

predicted pose matches the crystal structure, the docking setup is likely valid. 

Cross-docking involves docking ligands into multiple receptor conformations. This is useful for 

flexible proteins such as kinases or GPCRs, where induced fit can alter the binding site. Cross-

docking evaluates the robustness of the docking protocol across different protein states. 

Example 1: Docking dasatinib into three different BCR-ABL conformation: active, intermediate 

inactive, and inactive, shows that dasatinib binds selectively to the active (open) conformation8. 

Integration with experimental data provides additional validation. If a docking pose predicts a 

hydrogen bond with a key residue, mutating that residue should reduce binding experimentally. 

Combining computational predictions with mutagenesis, SAR, or biochemical assays strengthens 

confidence in the results. 

Advanced Docking Approaches 

Standard rigid docking has limitations, which advanced techniques address: 

Induced fit docking 

This allows receptor side chains or backbone segments to move in response to ligand binding, 

accommodating flexible pockets such as kinase activation loops or GPCR binding sites. 

Hsp90 inhibitors 

Hsp90 is a molecular chaperone with a highly flexible N-terminal ATP-binding pocket. When 

inhibitors like geldanamycin are docked using rigid receptor models, the predicted poses often fail 

to reproduce crystallographic interactions because the lid domain of Hsp90 shifts to accommodate 

the ligand. Induced fit docking allows side chains and portions of the backbone to move, capturing 

these conformational changes9. This approach reproduces the correct hydrogen bonds between the 

inhibitor and key residues such as Asp93 and Lys58, and accurately positions hydrophobic 

moieties in the pocket. By accounting for receptor flexibility, induced fit docking improves both 

pose accuracy and ranking of potential inhibitors in Hsp90 drug discovery campaigns. 

Covalent docking 

This models ligands that form chemical bonds with the receptor, accounting for geometric 

constraints and energetic penalties. Covalent inhibitors, such as cysteine-targeting kinase 

inhibitors, require specialized scoring and sampling. 

Ras G12C inhibitors 

KRAS G12C mutants are oncogenic drivers in certain cancers. Covalent inhibitors, such as 

sotorasib, target the cysteine at position 12 in the switch-II pocket. Standard docking cannot model 

bond formation, so covalent docking is used to account for both the reaction geometry and 

C 



energetic penalties of forming the covalent bond. Covalent docking can predict proper electrophile 

orientation and optimize noncovalent interactions11. This allows identification of potent 

compounds that specifically react with the mutant cysteine while minimizing off-target effects. 

 

Figure 5: (A) Structure of Hsp90, (B) Closed lid conformation of ATP binding pocket in Hsp90-

ATP complex, (C), (D) and (E) showing closed lid conformation of ATP binding pocket in Hsp90-

ADP, Hsp90-geldelamycin and Hsp90-radicicol analogue complex respectively10.  

 

Figure 6: (A) and (B): Representation of KRAS G12C in complex with ARS-853. The acrylamide 

of ARS-853 can form covalent bond with 12 cysteine and extend to switch Ⅱ region. (C) Structure 

of ARS-85312. 

Macrocycle and Peptide Docking 

Cyclosporine and cyclophilin A 

Cyclosporine A (CsA) is a cyclic undecapeptide immunosuppressant that binds tightly and 

stereospecifically to cyclophilin A (CypA), with binding strongly dependent on the macrocycle’s 

conformational state. Standard docking methods often struggle with such ligands because they 



inadequately sample the vast torsional space and ring conformations of macrocycles. To address 

this, ensemble and macrocycle-specific docking approaches have been developed that 

systematically explore multiple conformers, improving the ability to reproduce crystallographic 

poses. In the case of cyclophilin A, docking studies using cyclosporine A have demonstrated that 

incorporating receptor flexibility improves the recovery of accurate binding poses consistent with 

crystallographic data13. These findings underscore that specialized approaches for macrocycle 

docking are essential for modeling complex ligands like cyclosporine and can guide the design of 

new analogs with improved potency and pharmacokinetic properties. 

 

Figure 7: The cyclophilin A–CsA complex. Cyclophilin A binding site (PDB:1CWA). β-sheets in 

light blue, α-helices in red in cyclophilin A structure. CsA is indicated in black and gray. The 19 

residues of cyclophilin A bind in CsA are dark blue14. 

High-Throughput Virtual Screening (HTVS) 

This approach leverages GPUs and hierarchical docking to handle millions of compounds 

efficiently. Post-docking analysis—clustering, visual inspection, and experimental cross-

validation—remains essential to avoid false positives. 

SARS-CoV-2 PLpro inhibitors 

During the COVID-19 pandemic, millions of compounds were screened virtually against targets 

from SARS-CoV-2 using GPU-accelerated docking. HTVS efficiently handled the large dataset, 

and post-docking analysis using clustering and visual inspection prioritized compounds with 

plausible binding poses15. Subsequent biochemical testing validated several hits, demonstrating 

that HTVS combined with careful pose evaluation can rapidly identify promising antiviral 

candidates. 
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