S$12

Matrix Algebra

- A systematic and concise way for managing systems of linear equations Operator. acts on a function to give a new function

a single equation

ax =b with solution x = a~'b

ajnx +apny =-C

a1 X + axpny = ¢

- A matrix is a rectangular array of elements that obeys certain
rules of arithmatic

(2 0078

2 X 2 matrix 3 x 1 matrix 1 X 4 matrix

CHIF

or

N

(0 0 7 4]

-

Differentiation operator d/dx

d _dflx)
S = T2 = ()

Addition and Subtraction.

Only matrices of the same size can undergo addition and subtraction

21+13_2+1 1+3)_(3 4)
7 4 5 6/ \7+5 446/ \12 10

7 4 7+ 4 11
ol+]4]=]0+4]|=] 4
3 1 3+1 4

GD-()=0G:2)=0G 2)

Scalar Multiplication

(2 1) _(2x2 2x1)_[4 2
7 4) \2x7 2x4) " 14 38
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Matrix Multiplication . Matrix acting as an operator

AR ( 1 3) (2 4) ( 1(2) +3(5) 1(4)+ 3(6)) (17 22) Multiplying a rotation matrix by a column matrix transforms or rotates it

5 6 7(2) + 2(5) 7(4) + 2(6) 24 40 § into another the column matrix
: y
matrix multiplication is not commutative: AB = BA 5 y ( 3) new, rotated
! vector | 4 . vector —4
N multlply'on the Igft ( 3)
2 4\[/1 3 2(1) +4(7) 2(3) +4(2) 30 14\ N TN by rotation matrix
BA = — — ' N
5 6 7 2 5(1)+6(7) 5(3)+6(2) 47 27 ; 0 -1
: > 10 .
Managing systems of linear equations !
anx + apy = ¢ Some Important Matrices
- Null matrix
| 0 O 0O 0 O

Can be represented as . - Diagonal matrix. a square matrix with all of the off-diagonal elements

. as zero
AB — aiy dap X _ apnx apy v 0 3 00 0O 0 O
an an)\y) = \aux any (63) [osc 0 0 0

. - Identity matrix. a diagonal matrix with 1 across the diagonal

-0 (b))

or

AB =C where C= <c1>

SO =
S = O
—_—0 O

ATAB = A!C ie. B=A"'C
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- Inverse matrix. A 1A = AA =1

(1 2 4 [ =2 1
IfA—(3 4) then A —<3/2 _1/2>

- Symmetric matrix. element a;; = a;

1 4
(4 3) app =ay =4

_—a~d DN
W WY
~ D =—

- Transpose. AT. Operation that exchanges rows and columns

(2 3 T (2 4
IfA—(4 7) then A —(3 7)

2 1

IfA—G ; g) then AT=1[1 7

6 2

- Orthogonal Matrix. A is orthogonal if A1 = AT
1/ve —1/y2 —1/y/3
1//2 —1/y/2

A= Ay=12//6 0 1/y/3
(”‘/2 ”‘/2) (1/\/6 1/y2 —1/y3

|

Matrix Algebra
Matrix Diagonalization

. Matrix diagonalization will be needed for calculating energies
. (eigenvalues) of molecular orbitals (eigenvectors).

" Ais diagonalizable if A = PDP"!

. (4 2 12\ o (20 L (-12
élf A—(l 1) thenP—(1 1)’])_(0 3),and P —(1 _2>

It can be proven that if A is symmetric, then P is orthogonal and thus

 P1=pT
' | 0 1
1fA:( ) then
1 0
(0.707 0.707) (1 O) . (O.707 0.707)
P= . D= P =
0.707 —-0.707 0 -1 0.707 —-0.707
Determinants
. 2x2
: al ain 5 2
= dy1dy — d1dsy, == 5(3) - 2(4) =7
azy dx 4 3
. 3x3
21 3 0
7 3 5 1 3 5 1 7 5
1 7 3 5
=24 6 —113 6 1 |[+3[3 4 1
3 4 6 1
8 2 =2 1 2 =2 1 8 =2
1 8 2 =2
1 7 3
—0/3 4 6
1 8 2
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Molecular Mechanics / Intro to Quantum Chemistry

MM Weaknesses

Since MM is oblivious to electronic distributions, universal accuracy in
describing molecules should not be expected

—Using force fields that lack appropriate parameterization.

—No transfer of parameters between force fields

—Optimization may not lead to a minimum initially, and slight modifications i

to the geometry are needed to guide the optimization

—Solvent and local electric fields are not typically addressed, but can be
corrected

—Solvent and local electric fields are not typically addressed, but can be
corrected

' Reading: Ch 4. pg 118-131
. Matrix review: pg. 108-118

e Introduction to Quantum Chemistry

Atomic Orbitals, Molecular Orbitals, and Basis Functions

Three p AOs

three pi-type MOs

energy
Two s AOs two sigma-type MOs
Cip ¢y + Conthy @ @ antibonding MO —
AO 1 AO 2 MO 2 v
@ @ a node (AOs change sign here)
: ¢1 \
C
Ciady + \2‘% bondingMO  —
coefficient of basis coefficient of basis MO 1 Vi
function 1 in MO 1 function 2 in MO 1
two pi-type MOs energy
. Two pAOs
AOT  A02 (¢, + C,t, antibonding MO —
é 8 g _— MO2 v,
Cnm °.° bonding MO
i % ‘ ‘ MO1 v

' AO 1 | energy
| AO2 AO03 . antibonding MO _
| g 8 8 Cya0y + Coap + Caats \ / MO 3 W
| nodes
ry Py Ci29y + Conthy + Cyoy . / nonbonding MO __
022 = MO 2 Yo
Ci1¢y + h‘
bonding MO  __
MO1 v
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Intro to Quantum Chemistry

Two Orbital Mixing Problem / Huckel Theory

Begin from the Schrodinger equation

Q2 .
ol m
VY = (B~ V) =0
r PP

_ 2
et o taz=V

After some manipulation

h2
( 8n2m Vit V)gb = kv

. o,
H = Vo4V
<8n2m T )

Hy = Ey

where ] is the Hamiltonian operator. It is the total energy operator from all
of the forces acting on the system. This is an eigenvalue equation of the

form;

é = operator

Of = kf,

fis the eigenfunction and £ is the eigenvalue. Eigenvalue equations appeari

frequently in quantum chemistry.

- How do we get the energy?

Hy = EY
Multiply the wavefunction by both sides of the eigenvalue equation

yHY = Ey’

followed be division and integration over the spatial coordinates

What is the form of the wavefunction?

LCAQ Approximation (Linear Combination of Atomic Orbitals)

Two-orbital mixing problem

Y =ci¢, + 20,

The coefficients tell us the extent of contribution from each atomic orbital

Substitution in the Energy formula above gives

E— [(c1py + capx)H(c16py + c2py)dv
f(cl¢l + C‘zd)z)zd'u

5 C%H“ + 2ci1coH1n + C%sz
cS11 + 2162812 + ¢3S»

How to we get the optimal coefficients?
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. c%H“ 1+ 2¢100H 1y + C%sz First rearranging gives;
ciS11 + 2¢162812 + 382

E(ciSi1 +2c12812 + ¢5820) = ciH + 2c1c2H1n + ¢3Hy

Hj are not operators, but are in units of energy physical nature of which followed by differntiation with respect to ¢4
will be covered later. OE
: (—) (C%Sll + 2c162812 + C%Szz) ~4- E(ZC]S}I ~}- 2C2S22) = 2c1Hy 4+ 2c0H 2

f¢1ﬁ¢1dU:H11 e

: A set OE/0c; =0
/(»blHCbszzlez/qbzﬂqb]dU“—”Hz]

E(2C|S|] -+ 26‘2522) = 2C;Hl] + 26‘2H12

and rearrange

2 i
/¢1dU251] (H“ —ES11)61+(H12—E812)C2:0

/ b prdv =S = / ¢, pdv = Sy doing the same for ¢, gives;

/ (/)2d S (Hyp — ES12)c1 + (Hyy — ESp)cp =0
20V = 922

which is identical to

Obtain coefficients that lead to the lowest energy by minimizing (H21 — ESo1)cr + (Hy — ES»)cy =0

E with respect to the coefficients. The idea is to search for a minimum in

coefficient space (aka MO space). the results can be presented as a system of linear equations;

OE/0cy =0 (Hy1 — ES11)c1 4+ (Hip — ESpp)c, =0
8E/8c2 =0 |
(Hy1 — ES21)c1 + (Hyp — ESp)c, =0

These equations are often referred to as the secular equations
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The secular equations can be present in a more concise matrix

_ The coefficients c;; and c,; are the basis function coefficients for y
representation

Hy —ESyy Hp—ESp ¢ 0 The coefficients ¢, and c,, are the basis function coefficients for y»
(Hzl—ESZI H22‘E522>< 2) B (0> '

, energy

Two s AOs two sigma-type MOs

Cio 01 + Coohy @ @ antibonding MO —
[(gn glz)] _<§“ ?2)15(6.1) _ (g) | AO1  AO2 MO v,
21 22 21 22 €2 | @ @ a node (AOs change sign here)

2 0, \
and more concisely as; [H—SE|lc=0 /Cn¢’1 + C\z1¢2 ®——@ bonding MO  —

coefficient of basis coefficient of basis MO 1 Y
function 1 in MO 1 function 2 in MO 1

and rearranged to; Hc = SEc

Here c is a column matrix and E is a scalar. The above can be modlﬂed S is the overlap matrix with matrix elements as overlap integrals S1
slightly to obey orbital conservation (the combination of two atomic orbitals:
must furnish two molecular orbitals with a distinct energy and coefficients).: Each §;; measures the extent that basis functions ¢; and ¢; overlap.
See the determinant approach to solving the secular equations for a better

understanding of the origins of orbital conservation. : Si=8;=1 5= 5ji
HC = SCe € is the energy levels matrix with y; having an orbital energy of & and
i (H” Hm) > having an orbital energy of &
Hy  Hyp '
it €12 | _ : — .
C= (C ) . Thus far, this has been an analytical derivation without any
21 (2 . approximations. Now we will introduce some approximations in order to
S S Si2 reduce complexity. This will be a derivation of so-called
\ Sy Sy Hiickel theory.

Now C is a square matrix with ¢ being a diagonal matrix.
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Intro to Quantum Chemistry

Lets make the following approximations (severe approximations);

S =1
Si2 =521 =0
S» =1

or Sij=0;  where §;=1ifi=jand ;=0

1

then the overlap matrix reduces to S = (0

then the matrix equation reducesto HC = Ce¢

and diagonalization of the Fock matrix H gives the coefficient matrix and

the energy level matrix

H = CeC™!

Orthogonal vs Orthonormal

(2] )
B0 A
20

ifi #j

)

/H
/ C\ H
l

H

' This results here describe the Simple Hickel Model (SHM) and suffers
. from too severe approximations to be accurate. However it does provide
. some physical insight regarding orbital interaction and energy levels of
. simple n systems (only p orbitals are treated).

The energy integrals in SHM are the following

. For basis functions on the same atom;

/4)iﬁ¢idv =Hjj =«

For p orbitals on adjacent atoms;

[ diigsav—tiy = [ figdo—t1; ~ p

For p orbitals separated by one or more atoms

/qbiﬁd)jd'l):]_]zj:/ijl:]ﬁbid’UZHﬁ20

a is defined as the coulomb integral which can be interpreted as the
ionization energy of the p orbital in question

B is defined as the resonance integral which can be interpreted as the
energy of an electron occupying the overlapping region between

adjacent p orbitals. A rough approximation for 3 is the average of the
coulomb integrals for the adjacent p orbitals.
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Physical representation of o and 8 Ethylene
Energy A H H
i \c—c/ 12 ( o ﬂ]
0 S E L e e R R | - \
electron falls from infinite © H/ ¥ B «
distance intoa pAQon C electron falls from infinite
distance into a MO formed | AIIyI

by overlap of two p AOs on

adjacent carbons a B O

) B a B
Q /\ 1/\3 0 B «
() @jj
50

a= Hj< 0 kJ mol™ | _
. Cyclobutadiene

B=Hj< 0kJ mol™* (o B 0 B
: 4 1 propo
‘ ‘ 0 B ap
With an understanding of the definitions of o and 3, we can write the SHM \P 0 B o
Fock matrix for systems described by only overlapping p orbitals. | 3 2
Generic Fock matrix Corresponding Fock matrices
( Hy Hp ... Hyy, \ Cyclobutadiene
| Ethylene Allyl
H2l H22 H2n y y 0 —1 0 -1
H = i 0 -1.0 1 0 -1 0
: : : H:(;; g):(f] _01) H=]| -1 0 -1 H = 0 -1 0 —1
\ Hy Hp ... Hw ) | 0 —1 0 10 -1 0

We can define B relative to o, which is set to zero
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Intro to Quantum Chemistry

Diagonalize the Fock matrix to get the orbital coefficients and energy Ievelsi

0 -1\ [0.707
-1 0 /) \o0707

-

0.707 -1 0Y\ /0.707 0.707
—0.707 0 1 0.707

C € C!

The eigenvectors below describe the orbital distributions

(0.707) ( 0.707 )
= —1 and — 1
0.707 —0.707

Vi V2

Orbital energy diagram for ethylene as determined from SHM

energy A

a—-p —

o+ —

Y= 0.707 ¢, - 0.707 ¢, @ -——&3
ON©

.............................. nonbonding level

wo=0.707 ¢, + 0.707 ¢, @ @
‘H_ £=—1 c—C
bonding MO O Q

- 1

antibonding MO

—0.707

. energy A

Allyl

0.500
0.707

0.500 —0.707 0.500

Vi

o—p

o+ —

H=

0.707
0

\ ) V3

—H-

0 -1 0
~1 0 —-1]|=

0 -1 0

0500 \ /—1414 0 0 0.500 0.707  0.500
~0.707 0 0 0 0707 0  —0.707

0 0 1.414 0.500 —0.707 0.500
e, 0, O
O, &, 0
0, O, &3
& c!

WS: 0.500 ¢1 - 0.707 ¢2 + 500 ¢3
€=1.414 antibonding MO

@
598
@

yp=0.700 @, + 0.000 $,—0.700 9, O

£=0 nonbonding MO O\ C /S
(+) (+)
/C

W, =0.500 @, +0.707 ¢, + 0.500 ¢, (C)\ g
e=-1.414 bonding MO
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 Nodal Properties of MOs

0 -1 0 —1
-1 0 -1 0 \ B — A plane where the phase of the wavefunction changes
0 -1 0 —1] . — The orbital energy increases as the nodal character increases
10 10 :
0.500 0.500 0500 0.500\ /=200 0) 0500 0.500 0.500 0.500 Butadiene, nodes, and orbital symmetry
0.500 —0.500 0.500 —0.500 0 000 0.500 —0.500 —0.500 0.500 :
0.500 —0.500 —0.500 0.500 0 000 0.500 0.500 —0.500 —0.500

0.500 0.500 —-0.500 —0.500 0 002 \0.5(}0 —0.500 0.500 —0.500

energy m -

7 C Draw
&1 000 3 nodes
0 & 00 7 or just
Vi V2 V3 V4 :
0 00 & 2 nodes
C & C! N -
— VY2 C C C C
NN
energy — + 1 node
w4 = 0.500 @, — 0.500 @, + 0.500 @5 — 0.500 @, ¢ ;
a-28— —— €= 2  antibonding MO (“; c w
@ N no nodes
- — i
W5 = 0.500 @, +0.500 P, 0.500 ¢5— 0500 ¢, (+) () - G
C—C - Oy
o — —1'— —t— nonbonding MOs Gw QfQ:) W % 5
e=0 e=0 C C C C :
: v O O
o+ f
Yy = 0.500 (Pf + 0.500 (02 + 0.500 (P3+ 0.500 (P4 E (-;
a+2pB — —H—— €=-2  bonding MO G—M L,Q:D
C C
/\ /_\
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e Stability

— Orbital energy diagrams gives some sense of relative stability

Ethylene orbital energy diagram with differing number of electrons

energy |

antibonding orbitals

- = 4

nonbonding level

o

H2C :CH2+ HQC:CHz
radical cation neutral

H,

H2C =CH2_
radical anion

bonding orbitals

energy A

Allyl orbital energy diagram with differing number of electrons

energy,

- antibonding orbitals

e $ ............... HL .........

nonbonding orbitals

//1\ /\ A bonding orbitals
cation neutral radical anion

— cation not readily undergoes oxidation

— neutral radical can be more easily oxidized since the electron is in a
non-bonding orbital, with the same potential as the cation to be reduced

. —anion expected to exhibit similar oxidation potential as the neutral

radical, while it should be resistant to reduction.

Cyclobutadiene orbital energy diagram with differing number of electrons

antibonding orbitals

----------------------- i """'|"'"""%""%"ﬁonbonding orbitals

bonding orbitals

12
S

dianion

3
) _

dication
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Diagram shapes for acyclic systems
A

a-20

nonbonding level

o+ — J—

o+2pB - —

acyclic species

Diagram shapes for cyclic systems

o+p L _

a+2fL — —_ — —_— —
Cs Cy4 Cs Cs C,

cyclic species

The 4n+2 & electron rule (n=0,1,2, ...) for aromaticity comes from Huckel theory

nenbonding level, a

¢ Resonance Stabilization Energy

— Allyl cation AN - - R

7 electronic energy may by determined by the sum of the energy levels of the
occupied orbitals

E,(prop. cation) = 2(o + 1.414f) = 20 + 2.828f

2n electron reference without resonance may be chosen as ethylene

E, (reference) = 2(a + f§) = 200 + 28
Resonance energy is then determined as;

E(stab, cation) = E,(prop. cation) — E (reference)
— (20 +2.828 ) — (2 + 2B) = 0.828p
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|
|
|

— Allyl (propyl) radical N X — Cyclobutadiene dication

reference —

reference — + Y
E(dication) = 2(a + 2f) = 200 + 4

Er(prop. radical) = 2(x + 1.414f) 4 o = 30 + 2.8283 E(reference) = 20 + 28

E,(reference) = (20 + 2f) + o = 30t + 28 E(stab, dication) = E,(dication) — E, (reference)
' — (20 +4B) — (2a+28) = 2
E(stab, radical) = E,(prop. radical) — E, (reference) |
= (3o +2.828p) — (3 + 2f) = 0.828f ¢ Cyclobutadiene gains no stabilization from resonance
. e Cyclobutadiene dication has additional stabilization from resonance

— Allyl (propyl) anion /\6 e @/\

¢ Bond Orders (BO)

reference . . \TJ/ e Describes number of electrons within bonding region

BOsingle =1, BOdouble =1, Botriple =1,

e SHM Bond Order

E(stab anion) = E(prop. anion) — E(reference)

= (4o + 2.828f) — (4o + 2f) = 0.828p based on the bonded atoms' contributions to the MQ's
e 7 allyl radical, cation, and anion all have the same resonance energy. Why? Bij =1+ Z neicy
: all occ
- Cyclobutadiene  [7] [T . Ethene (4 electrons)
| Bij=1+ Z ncicj = 14 2(0.707)0.707 = 1 + 1.000 = 2.000
reference — + — : all occ

E.(cyclobutadiene) = 2(a + 2f) + 2 o = 4o + 4f Ethene radical anion (5 electrons)

E(stap, cyclobutadiene) = E,(cyclobutadiene) — E,(reference) Bij=1+ Z ncici = 14 2(0.707)0.707 + 1(0.707)(—0.707)

= (4o +4B) — (4o +48) =0 | all occ
| =1+1-0.500 = 1.500
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e Atomic Charges e SHM Strengths and Weaknesses

e Describes extent to which a test charge is repelled or attracted to an atom
e Dependent on atomic contributions to the MOs

q,-:]——ch?

— Strengths
e Provides some limited insight into systems of r electrons

all occ — Weaknesses
e A carbon with no = electrons would have g; = +1 ¢ Only provides insight into systems of = electrons
' e Approximations are too severe to produce desirable accuracy levels
Methylenecyclopropane |
A i /¢: d)jd?) e SU — ] or ()
=2 c=0.815iny
= V. 2 ; 7 f— .y =—
— 0.282in V1 - q1=-0487 [ ¢;Hop;dv=Hj = o, f or 0
a-p - — c=0.254iny; i 0, = 0422 .
0.6121n yi—— 2="Y. — electron-electron repulsion is largely untreated
___________________ - i — electron spin is not considered
+- v e ~ . e Extended Huckel Theory (EHT)
a+0.311 B c=-0.368in y, q3=0.182 |
o+p - 0.523 in y, — In SHM, a Fock matrix is formed and diagonalized to give the MO energies and
coefficients
o+ 2B _H_ — EHT was formulated to remedy the deficiencies in the Fock matrix from SHM

Vi :

0+2.170, . — SHM Summary

| e Basis set consists of only p orbitals which are supported by a sigma framework
2
sp, S
q=1-3Y nd=1- [2(0.282)2 +2(0.815)2} — 1 — 1.487 = —0.487 . ps)
all occ | » orbital interactions (Hy) are limited to o, 3, or O

5 5 5  Fock matrix elements are not calculate (H; are not dependent on location)
B=1-Y nd=1- [2(0.612) +2(0.254) } = 1-0.878 = 0.122

all occ » Overlap integrals (Sj) are either 1 (adjacent) or O (not adjacent). This gives an
; overlap matrix of unity (S = 1), which permits direct diagonalization of the Fock
Gr=qa=1-—Y n3=1- [2(0.523)2 + 2(—0.368)2} —1-0817=0.182 |  matrix (H. HC=SCe=1=Cs¢

all occ ; HC =C¢ H= CSC-1



