S33 Ab initio Methods: Hartree-Fock Theory

o Hartree Method \—1 /2v?2
Hamiltonian for a two-electron system -
! ! v y +~ )\ electron 1
The Schrodinger equation for a system of two or more electrons cannot be solved /;Z/ 1
exactly. The Schrodinger equation for a He like system can be expressed as; E @
| 1/ry5
h? ’ 5 Ze? Ze? e? Z=2 \tZ/ I -1/2V3
- Vi+V5) — - + ¥ =EY E -
8m2m ( ! 2) 47[8()]’[ 47[8()1'2 41[80]"12 : \ N
A B C electron 2

\ kinetic energy — == potential energy from attraction, stabilizing
A : Kinetic energies of electron 1 and electron 2

. . - otential energy from repulsion, destabilizin
B : Potential energy of attraction of electron 1 and electron 2 to the nucleus P % P J

C : Potential energy of repulsion between electron 1 and electron 2 ' - The Born-Oppenheimer approximation permits the separation of the nuclei kinetic
' terms. This Hamiltonian of focus here is thus the efectronic Hamiltonian.
The Schrodinger equation can be expressed more succinctly in atomic units - The 1/r1, term makes this system impossible to solve analytically.

Length: 1 bohr = ay = dreo(h210)* Ime* = egh?/mme” = 0.05292 nm = 0.5292 A Hartree Wavefunction

Energy: 1 hartree = E,, (or h) = e*/4nega; 1 h/particle = 2625.5 kJ mol ™' - The Hartree method of expressing the total wavefunction as a product of one-
. electron wavefunctions can be used.
lor 1o 2 2 1\ pu ;
Vi3 i-2-Z4 Dlw g 5 %o = Yoo 2a(3) . ()

The Hamiltonian is given by: . Yo(1) is a function (atomic orbital) of the coordinates of electron 1

1
2

V% B 1V§_ B E B g + L Y, Isthe initial guess for the system wavefunction
2 i e . - To optimize W, , each electron is subjected to the average electrostatic field
. produced by ail tne other electrons. /y(2), Yo(3), ... , Yo(n).

Wo(l) is optimized to /;(1) . Electron two is then treated in the same way to
2n 7 i ! optimize Y(2)to y/,(2) and so on for the other elecrons until an improved
H= Z ——V?— Z SN E molecular wavenfunction is obtain;
i . . '
SR O e = 0y (D91 (200 3) . v ()

After the second cycle, an even more improved wavefunction is obtained.

H=

The general Hamiltonian for a 2n electron system is given by;

This Hamiltonian excludes effects from relativity and spin-orbit coupling (magnetic
interactions) Yo = (1), (2)42(3) - . - p(n)
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The process of MO optimization through subjection to the updated electrostatic field

Spin orbitals

produced by all other electrons is the Hartree method of wavefunction optimization
or also called the Self-Consistent Field (SCF) method . - Wavefunctions can be decomposed into spatial orbital and a spin orbital part
Antisymmetry and Spin Y(spin o) = y(spatial)o = ¥ (x, y, z)a
- The Hartree wavefunction does not include an important fundamental property of 1//(spm ﬁ) - lﬁ(spatlal)ﬁ - l,b(x,y, Z)ﬁ
electrons: Spin. E The spin functions are associated with a spin operator §
- Pauli Exclusion: no two electron can have the same set of quantum numbers. ) pin funct ! W pin op Sz
- Furthermore, electrons are what are called indistinguishable particles SAZac = W(h/27)o
- exchange of the coordinates of any two electrons must leave their respective .
wavefunctions either unchanged or of opposite sign. S.B =—Y(h/2n)f3

Yo = f(x1,y1,21; %2, Y2, 22) with eigenvalues 1/2h/2r and —1/2h/2x

¥, mf(m,y:z,Zz;xl,J’th)

Orbital diagram demonstrating spin and Pauli exclusion
Symmetric ¥y, =Y, :
» energy
Antiymmetric ~ Wp = -, L
2 2
Wal” = [Py
- Hartree Product is symmetric, not antisymmetric .
- Electrons are actually antisymmetric with respect to exchange — Y
Consider Helium w
- — ¥4
!// — Is(x z)1s(x 2,) : used with "electron 1" to make row 1
a = 1S Y1, 2101842, )2, 22 = _— y(e) w(MBA) y(ed1) wp(1B(1)
exchange Yo = LIs(x2, y2, 22) 1s( xy, yy, 21) pTTTTTT T / used with "electron 2" to make row 2
| W e - wh T w0 v@BR) v vR)eR)
then Va =¥ 5 — i\ d with "electron 3" to make row 3
: ; used with "electron 3" to make row
| _H_% § —f—%a _i_ vib v,(3)a(3) v, (3)B(3) w,(3)ax(3) y,(3)B(3)
Wa = 1s(xy, y1, 21)18(x0, ¥a, 22) — 18(x2, ¥2, 22) 18( X1, Y1, 21) : e N .
! used with "electron 4" to make row 4
l.ba I_Wb y(4)o(4) v, (4)B(4) y(4)ofd) y,(4)5(4)
= 15(x2, V2, 22) 18( X1, V1, 21) - 1 1s . The wavefunction that best describes this overal picture is best described by a
Vo (2,2, 2 18C X1, Y15 20) = s,y 20) 1802, 2, 22) Slater Determinant.

l//a Is a proper antisymmetric wavefunction and can be represented by a determinanti
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Slater Determinant Calculate the Energy

- With our Slater determinant, we can plug that into the expectation expression for
i the energy. [W ¥
[ Wdr

- Slater determinant for a 4 electron system

- 1/(41"2 is a normalization factor Pl

With normalization;

() Y (DF1) Ya(Da(l) da(1)B(1) e — e o
1 n(2)a(2) ¥ni(2)B(2) ¥a(2)a(2)  ¥,(2)B(2)
VALY (3)a(3) ¥ (3)B(3) ¥a(3)x(3) ¥,(3)B(3) E= /‘P*ﬁ‘i’dr
Yi(4)a(4) Y (4)B(4) Yr(Ha(4) Y, (4)B(4) . )
E = (Y|H|¥)

- The Slater determinant ensures that no more than two electrons in each spatial

orbital. :
: _ - . Substitute the Slater determlnant in to energy expression using the following
- In a determinant, the exchange of two rows produces the negative of the original | Hamiltonian: 1

determinant. This property ensures antisymmetry. ! H — Z _ _v2 ﬂ _
- Electrons can also be assigned to columns instead of rows. all i Wi iy
n(Ma(l) @a@) 1G3)2B) hi@)(E) gives; = 2ZH,, P03 - Ky)
v _ 1 (B i (2)B(2) ¥ (3)BB) ¥ (4)B(4) =1 =
VAL Y (Da(l)  ¥(2)2(2)  ¥2(3)2(3) ¥ (4)x(4) : 7.7,
Vo (DB(1) Yy (2)B2) ¥,(3)B(B) . (4)B(4) iNuc-Nuc repulsion is added separately Vv = :ﬂ
' all vy " HY
_ _ Ewhere H; is the core Hamiltonian. Cm
- For a general 2n electron system, the Slater determinant is; ! H; = /ap Wy (1)dv
i Jcore _ _1 2 é
\P2n:; i " (])_ ZVI ;r;zl
(2n)! : g
Yi(Ma(l) (DE()  vo(a(l)  a(1)B(1) v, (1)A(1) i . 1\
Ui(2)a(2) W (2)BR)  Y(2)a2)  ¥,(2)B(2) v, (2)8(2) ; Coulomb Integral Jij = / t/f,-(l)w,-(l)(a)«//,- (2)¥;(2)dvidv,
X . : :

Exchange Integral sz:flﬂ?(l)lﬁf@) (r—)t//,-(Z)u,bj(l)dvldvz

12
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Coulomb Integral

gy = [0 ()2 anavs

12

Classical Coulombic repulsion

volume dv, contains
charge y;(1) y; (1) dv,

volume dv, contains
charge y;(2) y;(2) dv,

dv, () =

055 dvy

Vi

Yj

contains electron 1 contains electron 2

1
Potential energy between dv, and dv, is y;(1) y; (1) dv, - v;(2) y;(2) dv,
12
(product of the charges divided by their distance apart)

Exchange Integral
' 1
K= [ 000 ()@ v

- A consequence of spin and the antisymmetry of electronic wavefunctions
- Reduces the coulombic repulsion by K (2J - K)

significantly than electrons of unlike spin.
Hi = [ Wi (OA™ W1

n 1 Z
Hcorf:(l) _ _iv% . Z_ﬂl

all p Pt

Core Electronic Energies

- H;; gives the energy of an electronic due to only its intrinsic kinetic energy and its

attraction to all of the nuclei, in the absence of all electrons.

Ab initio Methods: Hartree-Fock Theory

| Coulomb and Exchange Interactions

-

A

I
A4

4 Jintegrals 2 Kintegrals
(between electrons in different (between electrons of the same spin)
spatial MOs)

¢ Variation Principle

- If the wavefunction and Hamiltonian are exact, <W|H|V> would give the true
energy of the system. - However, we typically do not have the exact wavefunction.

- The Variational Principle tells us that any wavefunction that we insert into the
. energy expectation value equation we report back an energy that is greater than or
. equal to the true energy. The quality of the wavefunction is determined by how low

- Accounts for the behavior that electrons of the same spin avoid each other more the reported energy is.

E>f%ﬁ%h
0— f\};o*\POdT
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Ab initio Methods: Hartree-Fock Theory

e Energy Minimization — Hartree-Fock Equations
- Perform a similar energy minimization as was done to obtain the Secular equationsi
in Huckel theory.
- This time, a constraint is applied to render the molecular orbitals () orthonormal.
- The minimization subject to a constratint is done using the method of Lagrangian

multipliers.

- The result is a familar set of equations;

These are the Hartree-Fock Equations

(!ﬁ

€1
\w,{(l)/ ’
Fock Operator.

Coulomb Operator.

Exchange Operator.

Schrodinger equations. This is because the Fock operator is itself also dependent on
the MOs (ie. it depends on the function by which it acts upon).

How can we improve upon the molecular wavefunction?

]';‘v — [_"Icore(l

F = el
o\ (V1)
2(1
O va(1)
) \ 1))

F (1) = ety (1)
Fry (1) = eayy (1)
Fi3(1) = ess(1)

Fy, (1) = eatp, (1)

)+ @) - Ki(1)

0= [we(; e
b [ (o ne

The Hartree-Fock Equations are not true eigenvalue equations, unlike the

Hartree-Fock Equations Interpretation.

- H-F equations are pseudoeigenvalue equations

- Each og the equations of Fis = g4 is for one-electron. Fis a on-electron
operator and each i is a one-electron spatial molecular orbital. Two electrons
occupy each i if they have opposing spins.

A,
"“j yryav

s,-:/nm A" (L (1 dv+Z 27;(1) - Ky(1))

& = H™ + Z (27;(1) — Ki(1))

- H;*°"® is the energy of the electron due to its kinetic energy and attraction to the
nuclear backbone

- £2J;;— Kj; is the exchange corrected coulombic repulsion energy from interaction
of an electron in orbital / with all the other electrons.

- A trial molecular wavefunction ¥ can be used to define the Fock operator F.

- Fis then acted on guess y,'s to obtain the eigenvalues ¢,

- Updated i/;'s are then obtain as the eigenvectors

- The update y/,'s are then used to construct a new F matrix

- The process is repeated until the total energy is no longer lowered and the /s
no longer change.

- The electrostatic field produced by X>2J;;— Kj; will also reach consistency
- The process is self-consistent; Self-Consistent Field Theory (SCF)
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Roothan-Hall Equations.

- How are the /s represented?
- Linear combinations of basis functions.

Yy =cngy+cengy gyt cmy,
Yo = oy + cndy + 3003+ -+ oy,
Y3 =13y + c3py + 333+ - - + Cpad,,

ltbm - Clmd)] + C2m¢2 + C3m¢3 +eee ("”'"’(;b"f

individual basis functions
-ij,k,l for v/'s and r,s,t,u for ¢'s

m basis functions sth basis function

N/

Wi = 2.C5 95 i=1,2,3, .., m(mMOs)

/TN

ith MO c of the sth basis function of ith MO
- X,y,z are the coordinates of the electron treated by i;
- Xo,Y0,2Zo are the coordinates of the nucleus
r=[(x—x)* + O —y0) + (z - 20"
Basis set

- a set of basis functions used to describe the molecule
- a simple basis set for CHy

¢(C, 15), ¢(C, 2s), ¢(C, 2px), ¢(C, 2py), $(C, 2p,)
¢(H, 1s)

1
Loom m m

E E CsmFls =& E CsmSls E CsmFZ.\' = &m E C‘sn]Slx g CsmFm.s' = &m 5 Cs.'nSms

] T — S:] S:E
: s=1 s=1 s=1 s=1

Substitution of the m basis functions into the H-F equations gives;

m m

Z coF by = & Z Cs14;

s=1 sj=1

m

m
D coFp =Y cod,
s=1

s=1

Z Csmﬁ be = &m Z Csmﬁ (f)s
s=1 s=1
Each of the set of m equations is multiplied by ¢4,¢,, 4¢3, ..., ¢, Which is followed by

integration to give m sets of equations, one for each of the basis functions, ¢.

For ¢ For ¢, For ¢,

m m

Loom m

| m m

! cF.:aEcS E: _ 2:

: ; st ds : e s1o1s E calFas = & E Cs1525 Cs1Fms = &1 Cs1Sms
D o =1 s=1

s s=1 s=1

S

E m m m m m m
E Z C‘QFIS =& Z C'QS” Z C_QF 2¢ — &2 Z (.'52823 Z C.s'ZF ms — €2 Z CsZSms
v osj=1 s=1 —1 —1 s=1 s=1

m m m

F,-S = [(/),ﬁqbsdv and Srs — /(]5,.(]5de

- Each set of m equations contains in itself m equations leading to m x m equations
- These are the Roothan-Hall version of the H-F equations

- This basis set would create 9 MO's which could accommodate 18 electrons

m m
: ZFI‘.\'CSi = ZSJ'SCM'E! r=1,2,3,...,m,
- The 10 electrons of CH4 would be used to fill the lowest energy 5 MO's 1 1

(foreachi =1,2,3,...,m)
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Roothan-Hall equations summarized; connection between basis functions, MO's,

Ab initio Methods: Hartree-Fock Theory

total wavefunction and energy levels.

Using, e.g., a set of 4 basis functions:

{ ¢1’ ¢2s ¢3: ¢’4}

If there are 4 electrons in the molecule, then y; and vy,

weighted sum

(the weighting factors are the MO coefﬁcient’s C)

are occupied (and y; and y, are virtual orbitals). The

occupied orbitals are used to construct the total wavefunction,

as a Slater determinant of spin orbitals.

Matrix Representation

y(De(1) y (1B (1) ed(1) wu(1)B(1)
Yi(2)a2) y,(2)B(2) wa(2)o(2) w,y(2)B(2)
v1(3)(3) w4(3)B(3) wa(3)3) Wwx(3)B(3)

Yy (4)o(4) yy(4)B(4) yo(4)al4) wy(4)B(4)

\

MO #

Va

Y3

Yo

v

nersy |

€4

SCe =

. - Expansion gives;

Fii Fin Fi3 Fim Ci1 €12 €13 - Cim
Fyr Fp Fpn Fap, €1 € €3t Cop
F ml F m?2 F m3 F mm Cml Cm2 Cm3 Cmm

Fricin + Fracp + Fraes)
Fareny + Faeoy + Fasesy

Frici2 + Fracp + Fizcsn
Fa1c1p + Farcan + Fazess

Sit S Stim cl11 €12 Cim en 0 - 0
S S» Som 21 €2 C2m 0 e --- 0
Smi Sm2 Smm Cml Cm2 Cimm 0 0 Emm

Siiciz + Si2cn + Si3c3p - -

S21C|2 +522622 -} 823(;33 SRR P

S21¢11 + 822021 + 823031 - -

\

{81(511611 + S1ac21 + Si3¢31 ) &(Siici2 + Si2e2 + Si3cn - )
e1(Sa1c11 + Sxnc21 + Sascz - --)  €a(Saici2 + Sncan + Sxcsz - 0)

\

we can see that;

- Since we have a set of m x m equations that need to be solved, we should be able

to translate the problem into a matrix format, similar to that from Huckel theory.

FC = SCe

Fiiciy + Fraeor + Fizesn + - = e(Snien + Siaear + Sizez +--+)
. which is shown to be generally;
: m m
Z CsiFrs = € Z CsiSrs
s=1 s=1

So the matrix treatment is a valid approach to solving the equations.
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Roothan-Hall Summary

1. Express total wavefunction ¥ as a Slater determinant
2. Electronic energy is obtained from <W¥|H|¥>
3. Substitute Slater determinant into <¥|H|¥> to get;

E = 2Zn:H.-i +ii(2’ﬁ — Ky)
i=1 i=1 j=I1

4. Minimize E with respect to the /s to get the H-F equations

Fy = ey

5. Substituting in the H-F equations the Roothan-Hall LCAO expansion gives;

l//i — Z Csi d)s
FC = SCe¢

Using the Roothan-Hall Equations

The Fock matrix elements are defined by;
Frg = / ¢, Fp.dv

where the Fock operator takes the following form;

~

F= () + 3 20(1) - Ki(1))

and substitution gives;

Fry = / b | (1) + 3 @U(1) - Ry(1)) | by

. where the H®"® operator is;

I
2

Z,
Vi-) -
all,u"”1

ﬁcorc:( 1 ) _

with the Coulomb operator;
50 = [ )@

and Exchange operator;
1

12

K0 =) [:0) () v

. Obtain c's and &'s through similar method used in EHT,

. 1. Overlap matrix is calculated, S, followed by the othogonalizating matrix S-1/2

S DS /2

. 2. 8"2is used to convert F to F’

FI — S-—l/zFS-l/z

3. F' is diagonalized to obtain the MO energies

F' =CeC™!

. 4.572is used to convert C' to C

C=s"2C

The combination of Fock diagonalization with the H-F equations makes up the SCF
i process.
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Ab initio Methods: Hartree-Fock Theory

Step 1

Specify geometry, charge and electronic state,
e.g. CH, cartesian coordinates, charge = 0, singlet
or CH, cartesian coordinates, charge = 0, triplet, etc.

Choose a basis set.
Start the calculation.

Step 2

Program calculates integrals: kinetic energy, potential energy, and
overlap integrals.

Step 3

Program calculates orthogonalizing matrix using overlap matrix (composed of
overlap integrals).

Step 4

Program calculates initial Fock matrix using kinetic energy and potential energy integrals
and an initial guess of basis set coefficients (initial guess from, e.g., an extended

Huckel calculation; the guess c¢'s usually have to be "projected” to the ab initio basis,
which is almost always bigger than that used for the guess calculation).

Step 5

Program uses orthogonalizing matrix to transform Fock matrix to one based on an
orthonormal set of functions derived from the original atom-centered basis functions.

Step 6

Program diagonalizes Fock matrix to get ¢'s (based on the orthonormal, derived basis
set) and energy levels.

Step 7

Program transforms the c's to a set based on the original, atom-centered basis functions.

Step 8

Program compares c's (and/or energy, or other parameters) with the previous set; if the
match is not close enough, another SCF cycle, steps 4—8, is done, using as input for
step 4 the latest ¢'s. If the match /s close enough, the iterations stop.

W -

-~ — ) .- - -

(o4]

Define molecule

calculate integrals

calculate othogonalizing
matrix

calculate initial
Fock matrix

transform Fock matrix

diagonalize Fock matrix

transform ¢'s

compare parameters
with previous ones
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Using Roothan-Hall Equations with LCAO Expansion | (rs|tu) is a 6-fold integral integrating over the three cartesian coordinates for

. _ _ _ _ _ electron 1 (x4,y1,21) and the three coordinates for electron 2 (x5,y»,25)
eThe objective is to expressive all equations in terms of the basis functions and c's

Fock matrix elements look like this; exchange operator is;
o= (9 (DA™ (1) >+§: [2{6, (D5 (1D,(1)) = (¢, (IK (Dl (1)] R (1), (1 )/*” 952)
with the Couolmb operator as; with similar LCAO expansion;
. v; (2)y;(2) §
T = 1) [ 5 g
e | Ki(D8,(1) = 6,0 D D e [ 215
subtitute LCAO expansion into y/s; Zc*,jgb:k(Z) =¥ D Yc,idu2) = Y2 =1 u=l
: 2 ; SR ¢r(1)bu(1); (2),(2
VOTXURTA0) 3 By e e  BORMGD) =D D ey [ [LIROBDED
=1 u 12 ' =1 u=I1
for insertion into F,, J(1)¢s(1) is multiplied by #{1) to give; mno
S " g (b, (DIK; (N s(1)) =D > creu(rults)
2 t=1 u=1
<¢r(l ZZ(U(MJ//d) 1 )¢'“( )d"ld‘r’z
t=1 u=
- rU|IS' / /(p d)u (bt (2) ( )d\"ld\"z
or more succinctly as;
(r,b,(l)lf i(Dey(1)) = Z Z CyiCuj(rs|tu) Substitution into above expression for F,s gives the Fock matrix elements expressed
=1 u=1 . exclusively in terms of ¢'s and C's
where EFrs = (¢,(1 )chom( )]s (1 Y [2?Yf Cuj(rs|tu) - Cyj(rs|tu)
(rs|tu) = //(/) (D¢ ()¢ (2 )dvldvz ; < > =1 | =1 u=1 v ;; '
r2 :
' Frs = H™(1 +ZZZ cuj[2(rs|u) — (ruts))
analogous to (flg) — /ft(q)g(q)dq =1 u=l j=
HE (1) = (6, (DI (1)]g,(1))

(rsleu) = ] (6,(1)bs(1))" b (1) bu (1)
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Density Matrix - Compact Book Keeping of c's n
i Eup =2 & 2J:(1)
The c's in F,5 can be organized in matrix form. ! - Z ! zz; jzl: ( U( ( ))
; . How is the energy Ey expressed in terms of only &s and ¢'?
(Pu Py P le\ ; F
Pyy Py Py - P : L . L
P = : m ! _ core
e S S SCUORIIED SRS O
- . .. . : '_E I—l
\Pml PmZ PmS e Pmm) n n

n
Pu=2) cicy t=12,...om and u=12,..,m

m m l
Fro = H®™(1) + Pu[rstu -~ ruts}

P;, should not be interepreted for physical meaning.

Total H-F Energy

How can the total energy Eng be calculated from the MO energy levels?

Each MO energy is determined from;

Iu)rc + i 1 core ] !
Z J( )) H _ d)rl . VZ ! |¢

rs 2
lll,u
The sum of all of the MO energies overestimates Er because of electron-electron |
repulsion is being counted twice. 2Ly
" . Inclusion of nuclear-nuclear repulsion gives Vyn = .
- 5 all iy | AV
E(overestimated) = 2 Z:—:,- | o

i—1 ,
Solution is to subtract Y’ Y'(2J — K) ES — Eyp + Vi = Z &+~ Z Z P gHE™ + Vi

r=1 s=1




