

COMMON:

Coordinated Multi-layer Multi-domain Optical Network Framework for Large-scale Science Applications

Vinod Vokkarane
(University of Massachusetts at Dartmouth)
vvokkarane@ieee.org

Outline

- Introduction
- Project Objectives
- Experiments and Implementation
- Project Facts and Figures
- Project Tasks

Introduction (i)

- To support large-scale science applications we need to provision network resources across multiple layers and multiple domains.
- The network needs to provision connections between clients efficiently.
 - Immediate reservation (IR): network provisioning "immediately" when the connection request arrives.
 - Advance reservation (AR): resources can be reserved at some point in the future.

(b) Advance Reservation

Introduction (ii)

- Advance reservation can improve the performance of the network by increasing the connection success rate and guaranteeing the availability of resources for the application.
 - Some extra parameters (start time, end time, and duration) are needed.
 - Open research problems to be addressed for AR:
 - Multi-layer multi-domain survivability,
 - Multi-layer multi-domain QoS, and
 - new communication paradigms, such as anycast.

ELECTION OF SHIPE

Communication Services - Introduction (iii)

What is Manycast?

- Point to multi-point communication paradigm
- Source communicates with any k destinations from a larger candidate set, D_c
- Defined as: (s, D_c, k) (e.g. (1, {3,5,6,7}, 2))
- Multicast: $|D_c| = k$ (e.g. $(1, \{3,5\}, 2)$)
- Unicast: $|D_c| = k = 1$ (e.g. $(1, \{3\}, 1)$)
- Anycast: k = 1 (e.g. $(1, \{3,5,6,7\}, 1))$

Project Objectives

- Implement a Coordinated Multi-layer Multi-domain Optical Network Framework for Large-scale Science Applications.
- This involves the definition of new algorithms and mechanisms for advance and immediate reservation of network resources.
- Specific problems to be addressed in COMMON:
 - Multi-layer multi-domain path survivability (Task 1 T1).
 - Multi-layer multi-domain quality of service (T2).
 - Anycast (multicast-/manycast-overlay) request provisioning (T3).

T1: Multi-layer Multi-domain Path Survivability

- Survivability for immediate and advance reservation of dynamic connections.
- Issues to investigate:
 - Definition of parameters and design of basic IR/AR survivability schemes
 - Number of connection requests to re-route.
 - Time-shifted backup reservations.
 - Multi-layer survivability
 - IP layer vs Ethernet vs WDM/SONET
 - how higher layers (in OSCARS) can be mapped to lower-layer survivability mechanisms.
 - Multi-domain survivability
 - new topology abstractions with temporal information.

T1: Multi-layer Multi-domain path survivability

Summary of Tasks									
T1.1	Provisioning of multi-layer path suvivability for IR requests.								
T1.2	Handling different failure scenarios for multi-layer multi-domain IR survivability.								
T1.3	Handling different failure scenarios for multi-layer multi-domain AR survivability.								
Deliverables									
ID	Name	Start	End						
D1.1	Develop algorithms for coordinated multi-layer survivability and deployment on OSCARS	7/2011	10/2012						
D1.2	Extend multi-layer and multi-domain survivability techniques and deployment on OSCARS	4/2012 9/2013							

T2: Multi-layer Multi-domain QoS

- Ensure the QoS for different CoS defined in the multi-layer framework, especially for high priority traffic.
- Issues to be addressed:
 - Mapping of IP QoS (DHCP) and Ethernet VLAN priorities to circuit priorities
 - Multi-layer QoS → Guarantee the QoS metrics across multiple layers.
 - Multi-domain QoS → Ensure minimum level of service is guaranteed across different domains.

T2: Multi-layer Multi-domain QoS

Summary of Tasks										
T2.1	Provisioning of multi-layer QoS to IR requests.									
T2.2	Provisioning of multi-layer QoS to AR requests.									
T2.3	Incorporation of QoS metrics into multi-layer multi-domain path setup.									
Deliverables										
ID	Name	Start	End							
D2.1	Implementation of requests preemption on OSCARS to support multiple CoS.	10/2011	12/2012							
D2.2	Implementation of multi-layer QoS on OSCARS. 10/2012 9/20									

T3: Anycast/Multicast/Manycast service

- There exist other communication paradigms that could be very beneficial for large-scale experimentation.
 - Anycast: communication from a source to a unique destination within a candidate destination set.
 - Multicast: communication from a source to all the destinations from the destination set.
 - Manycast: communication from a source to a group of destination from a larger candidate destination set.
- We aim to provide support for these communication paradigms in the IR/AR framework.
- We may have to support these as overlays over point-to-point unicast connections in OSCARS.

T3: Anycast/Multicast/Manycast service

Summary of Tasks									
T3.1	Anycast (multicast and manycast) IR algorithms.								
T3.2	Anycast (multicast and manycast) AR algorithms.								
T3.3	Provide multi-domain extensions for anycasting (multicast and manycast)								
Deliverables									
ID	Name	Start	End						
D3.1	Deploy anycast (multicast and manycast) IR algorithms on OSCARS	10/2010	9/2011						
D3.2	Deploy anycast (multicast and manycast) AR algorithms on OSCARS 1/2011 3								

Project Facts and Participants

- Project timeline:
 - October 2010 August 2013
- Number of work packages and tasks:
 - 13 tasks in 3 different WPs.
- Number of deliverables:
 - 2 deliverables per WP.
- Number of researchers/students involved:
 - Principal Investigator (PI).
 - 1 Full-time Post-Doctoral Researcher.
 - 1 Full-time Visiting Scholar.
 - 2 Ph.D. students (from Spring/Fall 2011).
 - 3-4 Master's thesis students.

Project Timeline

ID	Deliverable Name	Start	2010 2011 2012 Finish			2010 2011	2010 2011				2013				
	Deliverable Tvarile	Start	rinari	Q1 Q1 (Q2	Q3	Qf	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
1	Deliverable 1.1	7/1/2011	10/1/2012												
2	Deliverable 1.2	4/2/2012	9/30/2013												
3	Deliverable 2.1	10/3/2011	12/28/2012												
4	Deliverable 2.2	10/1/2012	9/30/2013								-				
5	Deliverable 3.1	10/1/2010	9/30/2011					1							
6	Deliverable 3.2	1/3/2011	3/30/2012												

Research Group Background

- 1. B.G. Bathula and V.M. Vokkarane, "QoS-Based Manycasting Over Optical Burst-Swithced (OBS) Networks," *IEEE/ACM Transactions on Networking*, vol. 18, no. 1, pp. 271-283, Feb. 2010.
- 2. N. Charbonneau and V.M. Vokkarane, "Routing and Wavelength Assignment of Static Manycast Demands over All-Optical Wavelength-Routed WDM Networks," IEEE/OSA Journal of Optical Communications and Networking, vol. 2, no. 7, pp. 427-440, Jul. 2010.
- 3. Balagangadhar G. Bathula, Rajesh R.C. Bikram, Vinod M. Vokkarane, and Srinivas Talabattula, "Quality of Transmission Aware Manycasting Over Optical Burst-Switched (OBS) Networks," *IEEE/OSA Journal of Optical Communications and Networking (JOCN)*, vol. 2, no. 10, pp. 820–830, Oct. 2010.
- 4. N. Charbonneau and V.M. Vokkarane, "Multicast Advance Reservation RWA Heuristics in Wavelength-Routed Networks," to appear, Proceedings, IEEE Globecom 2010, Optical Networks and Systems Symposium, Miami, FL, Dec. 2010.
- 5. J. Wang, V.M. Vokkarane, R. Jothi, X. Qi, B. Raghavachari, and J.P. Jue, "Dual-homing protection in IP-over-WDM networks," *IEEE/OSA Journal of Lightwave Technology*, vol. 23, no. 10, pp. 3111-3124, 2005.
- 6. Q. Zhang, V.M. Vokkarane, J.P. Jue, and B. Chen, "Absolute QoS differentiation in optical burst-switched networks," *IEEE Journal on Selected Areas in Communications*, vol. 22, no. 9, pp. 1781-1795, 2004.