Section2.1Mathematical expressions using LaTeX¶ permalink
Mathematical content should be displayed using LaTeX. This is accomplished using either <m></m> for inline expressions or <me></me> for display expressions.
For those who are new to LaTeX, several types of expressions appear in this section. The source code for this document can be consulted to see the LaTeX code to realize them.
Note2.1.1
The result of doing arithmetic modulo \(n\) is always an integer between 0 and \(n-1\), by the Division Property. This observation implies that \(\{0, 1,\dots, n-1\}\) is closed under modulo \(n\) arithmetic.
It is always true that \(a +_n b \equiv (a + b) (\textrm{ mod} n)\) and \(a\times _n b \equiv (a \cdot b) (\textrm{ mod} n)\). For example,
\(4 +_7 5 = 2 \equiv 9 (\mod 7)\) and
\(4 \times _7 5 \equiv 6 \equiv 20 (\mod 7)\).
We will use the notation \(\mathbb{Z}_n\) to denote the set \(\{0, 1, 2,. . ., n-1\}\).
Theorem2.1.2Binomial Coefficient Formula
If \(n\) and \(k\) are nonnegative integers with \(0 \leq k \leq n\), then the number \(k\)-element subsets of an \(n\) element set is equal to \begin{equation*}\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!} \end{equation*}
The table for \(\oplus\) is
\[
\begin{array}{c | c c c}
\oplus & 0 & 1 & 2 \\ \hline
0 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
2 & 2 & 0 & 1
\end{array}
\]
Commutative Laws
\begin{gather}
\(a\lor b = b\lor a\)\label{boolean-law-1}\tag{2.1.1}\\
\(a \land b = b \land a\) \label{boolean-law-1-prime}\tag{2.1.2}
\end{gather}
Associative Laws
\begin{gather}
\(a \lor (b \lor c) = (a \lor b) \lor c\) \label{boolean-law-2}\tag{2.1.3}\\
\(a \land (b \land c) = (a \land b) \land c\)\label{boolean-law-2-prime}\tag{2.1.4}
\end{gather}
Distributive Laws
\begin{gather}
\(a \land (b \lor c) = (a \land b) \lor (a \land c)\text \) \label{boolean-law-3}\tag{2.1.5}\\
\(a \lor (b \land c) = (a \lor b) \land (a \lor c)\)\label{boolean-law-3-prime}\tag{2.1.6}
\end{gather}
Identity Laws
\begin{gather}
\(a \lor 0 = 0 \lor a = a\) \label{boolean-law-4}\tag{2.1.7}\\
\(a \land 1= 1 \land a = a\)\label{boolean-law-4-prime}\tag{2.1.8}
\end{gather}
\begin{gather}
\(a \lor (a \land b) = a\) \label{boolean-law-8}\tag{2.1.15}\\
\(a \land (a \lor b) = a\) \label{boolean-law-8-prime}\tag{2.1.16}
\end{gather}