Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \renewcommand{\vec}[1]{\mathbf{#1}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)
Webwork Exercises for Applied Discrete Structures
Ken Levasseur
Contents
Index
Prev
Up
Next
Annotations
Contents
Prev
Up
Next
Front Matter
Colophon
Preface
1
Set Theory I
Set Notation and Relations
Basic Set Operations
Cartesian Products and Power Sets
Binary Representation of Positive Integers
Summation Notation and Generalizations
2
Combinatorics
Basic Counting Techniques - The Rule of Products
Permutations
Partitions, The Law of Addition
Combinations
3
Logic
Propositions and Logical Operators
Truth Tables
Equivalence and Implication
The Laws of Logic
Mathematical Systems
Propositions over a Universe¶ permalink
Quantifiers
A Review of Methods of Proof
4
More on Sets
Section 4.1
Section 4.2
Section 4.3
Section 4.4
5
Matrix Algebra
Section 5.1
6
Relations
Section 6.1
Section 6.2
Section 6.3
7
Functions
Section 7.1
Section 7.2
Section 7.3
8
Recursion and Recurrence Relations
Section 8.1
Section 8.2
Section 8.3
Section 8.4
Generating Functions
9
Graph Theory
General Introduction
Data Structures for Graphs
Connectivity
Traversals: Eulerian and Hamiltonian
Graph Optimization
Planarity and Coloring
10
Trees
Section 10.1
Section 10.2
Section 10.3
11
Algebraic Structures
Section 11.1 - Binary Operations
Section 11.2 - Groups
Section 11.3 - Properties of Groups
Section 11.4 - Modular Arithmetic
Section 11.5 - Subsystems
Section 11.6 - Direct Products
Section 11.7 - Isomorphisms
12
More Matrix Algebra
Section 12.1
Section 12.2 - Matrix Inversion
Section 12.3 - Vector Spaces
Section 12.4 - Diagonalization
13
Boolean Algebras
Section 13.1 - Lattices
Section 13.5
14
Monoids and Automata
Section 14.1
15
Group Theory and Applications
Section 15-1 - Cyclic Groups
Section 15-2: Cosets and Factor Groups
Section 15-3: Permutations
Section 15-4 Normal Subgroups and Homomorphisms
Section 15-5 Coding
Section 15-6 Group Actions
16
An Introduction to Rings and Fields
Section 16-1 - Rings
Section 16-2:
Section 16-3: Fields
Section 16-4: Polynomials
Reference
Index
Authored in PreTeXt
Section
10.2
Section 10.2
¶
Subsection
Exercises
1.
Description: Library/NAU/setGraphTheory/Spanningtree.pg
login