1. MATLAB handout on Graphs and Functions(SPENNELL).
2. MATLAB Handout on Symbolic Capabilities(SPENNELL).
3. solve y'+py=q by linode1 and by dsolve.
31. solve y'+py=q problems are in a file for p and q.
4. Exact equations the Long method of solution Mdx+Ndy=0.
5. Solve Bernoulli y'+p y =q y^(n).
6. a y''+b y'+c y = 0 ; y=linode20(a,b,c).
7. Reduction
of order y''+py'+qy=0. y1 is a solution Find y2=ROO(p,q,y1).
8. a y''+b y'+c y = q1(x); variation is used in y=linode22(a,b,c,q1).
9a.
ax^2 y''+bxy'+c y = q1(x); Variation is used in
yy=cauchy_euler(a,b,c,q1).
9b.
ax^2 y''+aplusb xy'+c y = q1(x); Variation is used in
yy=aplusb_cauchy_euler(a,aplusb,c,q1).
10. Variation and reduction of order:Find y2 and yp of y''+py'+qy=r. y=varROO(p,q,r,y1).
11.
yp=u y1+v y2 . Method of Variation of parameters y''+py'+qy=r.
yy=variation(p,q,r,y1,y2).
12a. 3rd order Method of Variation of parameters y''' + p1 y'' + p2 y' + p3 y = r. yy=var3(y1,y2,y3,r,x).
12b. 4th
order Method of Variation of parameters y''''+p1y'''+p2y''+p3y'+p4y=r.
yy=var4(y1,y2,y3,y4,r,x).
12c. Nth
order Method of Variation of parameters D^n y +p1 D^(n-1) y+...+qy=r.
yy=varvec(y,r,x).
13.a
Laplace transform of ay''+by'+cy=q1. y(0)=y0,y'(0)=yprime0
y=lapode22(a,b,c,q1,y0,yprime0).
13b.
Volterra integral equation solved by Laplace transform .y = g + koy
Copyright ©1998 Beverly J. Volicer and Steven F. Tello, UMass Lowell. You may freely edit these pages for use in a non-profit, educational setting. Please include this copyright notice on all pages.