Dan Wasserman

| Department of Physics and Applied Physics


Spectral and spatial transmission through periodic array of subwavelength apertures for (a) normally incident light (horizontally polarized) (b) normally incident light (vertically polarized) (c) normally incident light (horizontally polarized) (d) normally incident light (vertically polarized) (e) 2 deg.incident light (horizontally polarized) (f) 4 deg. incident light (vertically polarized).


  1. “Observation of Rabi-Splitting from Surface Plasmon Coupled Conduction-State Transitions in Electrically-Excited InAs Quantum Dots”, B.S. Passmore, W.W. Chow, D.C. Adams, T. Ribaudo, S.A. Lyon, D. Wasserman, and E.A. Shaner, Nano-Letters, Jan (2011).
  2. “Selective Thermal Emission from Patterned Steel ”, J. Mason, D.C. Adams, Z. Johnson, S. Smith, A.W. Davis, and D. Wasserman, Optics Express, 18, 25912 (2010)
  3. “Plasmonic mid-infrared beam steering”, D.C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett., 96, 201112 (2010).
  4. "High-optical-quality nanosphere lithographically formed InGaAs quantum dots using molecular beam epitaxy assisted GaAs mass transport and overgrowth", Xifeng Qian, Shivashankar Vangala, Daniel Wasserman, and William D. Goodhue. J. Vac. Sci. Technol. B, 28(3), C3C9 (2010).
  5. "Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb”, B.S. Passmore, D.G. Allen, S.R. Vangala, W.D. Goodhue, D. Wasserman and E.A. Shaner, Opt. Express, 17, 10223 (2009).
  6. “Spectral and spatial investigation of midinfrared surface waves on a plasmonic grating”, T. Ribaudo, D.C. Adams, B. Passmore, E.A. Shaner and D. Wasserman, Appl. Phys. Lett., 94, 201109 (2009).
  7. “Active Control of Propagating Surface Plasmons Excited by a Quantum Cascade Laser”, T. Ribaudo, S.S. Howard, C. Gmachl, X. Wang, F.-S. Choa, and D. Wasserman, Opt. Express, 17 7019 (2009).
  8. “Active Control of Propagating Waves on Plasmonic Surfaces”, T. Ribaudo, E.A. Shaner, S.S. Howard, C. Gmachl, X.J. Wang, F.-S. Choa, and D. Wasserman, Proc. SPIE 7221-24, 2 (2009).
  9. "Room temperature midinfrared electroluminescence from InAs quantum dots", D. Wasserman, T. Ribaudo, S.A. Lyon, S.K. Lyo, E.A. Shaner, Appl. Phys. Lett., 94, 061101 (2009).  Selected for publication in Virtual Journal of Nanoscale Science & Technology, 2/23/09.
  10. “Loss mechanisms in mid-infrared  extraordinary optical transmission gratings”, T. Ribaudo, K. Freitas, E.A. Shaner, J.G. Cederberg, D. Wasserman, Opt. Express 17 666 (2009).
  11. "High k-space lasing in a dual-wavelength quantum cascade laser”, K.J. Franz, S. Menzel, A.J. Hoffman, D. Wasserman, J.W. Cockburn and C. Gmachl, Nature Photonics, 3, 50 (2009).
  12. "Uniform InGaAs quantum dot arrays fabricated using nanosphere lithography", X. Qian, J. Li, D. Wasserman, W.D. Goodhue, Appl. Phys. Lett., 93, 231907 (2008).
  13. "Active Surface Plasmons: Tuning of Surface Plasmons leads to new optoelectronic devices", D. Wasserman, Laser Focus World, January 2008.
  14. “Current-tunable mid-infrared extraordinary transmission gratings”, E.A. Shaner, J. Cederberg, D. Wasserman, Appl. Phys. Lett., 91, 181110 (2007)
  15. "Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings”, D. Wasserman, E.A. Shaner, and J.G. Cederberg, Appl. Phys. Lett., 90, 191102 (2007)
  16. “Negative Refraction in Semiconductor Metamaterials” A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, and C. Gmachl, Nature Materials, Published online Oct. 14th, 2007.
  17. “Narrow width, low-ridge configuration for high-power quantum cascade lasers”, A. Lyahk, P. Zory, D. Wasserman, G. Shu, C. Gmachl, D. Bour Appl. Phys. Lett., 90, 141107 (2007)
  18. “Evidence of cascaded emission in a dual-wavelength quantum cascade laser”, K.J. Franz, D. Wasserman, A.J. Hoffman, D.C. Jangraw, K.-T, Shiu, S.R. Forrest, and C. Gmachl, Appl. Phys. Lett., 90, 091104 (2007)
  19. “Multiple wavelength polarized mid-infrared emission from InAs quantum dots”, D. Wasserman, C. Gmachl, S.A. Lyon, and E.A. Shaner, Appl. Phys. Lett. Vol. 88, p.191118 (2006).
  20. ”High-Performance Quantum Cascade Lasers: Optimized Design through Waveguide and Thermal Modeling”, S. S. Howard, Z. J. Liu, D. Wasserman, A. Hoffman, T. Ko, C. F. Gmachl,IEEE J. Select. Topics Quantum Electron., 13, 1054 (2007).
  21.  “Room Temperature Continuous-wave Quantum Cascade Lasers Grown by MOCVD without Lateral Regrowth”, Z. Liu, D. Wasserman, S.S. Howard, A.J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and Fow-Sen Choa, IEEE Photonics Technology Letters, vol. 18, p.1347 (2006).
  22. “Stimulated electronic Anti-Stokes Raman emission in Quantum Cascade lasers”, A. A Gomez-Iglesias, D. Wasserman, C. Gmachl, A. Belyanin, and D.L. Sivco, Appl. Phys. Lett., vol. 87, p. 261113 (2005).