Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \renewcommand{\vec}[1]{\mathbf{#1}} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

Chapter12More Matrix Algebra

In Chapter 5 we studied matrix operations and the algebra of sets and logic. We also made note of the strong resemblance of matrix algebra to elementary algebra. The reader should briefly review this material. In this chapter we shall look at a powerful matrix tool in the applied sciences, namely a technique for solving systems of linear equations. We will then use this process for determining the inverse of \(n\times n\) matrices, \(n \geq 2\), when they exist. We conclude by a development of the diagonalization process, with a discussion of several of its applications.